The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

ribulose     1,3,4,5-tetrahydroxypentan-2- one

Synonyms: D-xylulose, L-xylulose, CHEMBL281818, pent-2-ulose, AC1Q5HJQ, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of xylulose


Psychiatry related information on xylulose

  • In the presence of 0.30 M (45 g/L) D-xylulose and 2000 U/L of both dehydrogenases, exhaustive substrate turnover was achieved typically in a 4-h reaction time [6].

High impact information on xylulose

  • Assembly of foreign prokaryotic ribulose bisphosphate carboxylases (Rubiscos) in Escherichia coli requires both heat-shock proteins groEL and groES [1].
  • In vitro reconstitution of active ribulose bisphosphate carboxylase (Rubisco) from unfolded polypeptides is facilitated by the molecular chaperones: chaperonin-60 from Escherichia coli (groEL), yeast mitochondria (hsp60) or chloroplasts (Rubisco sub-unit-binding protein), together with chaperonin-10 from E. coli (groES), and Mg-ATP [7].
  • Over-expression of the groE operon in E. coli causes enhanced assembly of heterologously expressed ribulose bisphosphate carboxylase subunits and suppresses the heat-sensitive mutant phenotype of several dnaA alleles [8].
  • This enzyme initiates photosynthesis by combining carbon dioxide with ribulose bisphosphate to form two molecules of 3-phosphoglycerate [9].
  • We have followed, in situ, the accumulation of malic enzyme (ME), phosphoenolpyruvate carboxylase (PEPCase), and ribulose bisphosphate carboxylase (RuBPCase) mRNAs in developing leaves of both normal and mutant argentia (ar) maize [10].

Chemical compound and disease context of xylulose


Biological context of xylulose


Anatomical context of xylulose

  • Transcripts of the maize plastid gene for the large subunit of ribulose bisphosphate carboxylase reach a maximum by 20 h of illumination; transcripts of the nuclear gene for the small subunit of this enzyme continue to accumulate and fall considerably later [21].
  • We have identified three major blocks of amino acid homology shared by the transit peptides of two nuclear-encoded chloroplast proteins, the light-harvesting chlorophyll a/b-protein (LHCP) II of the thylakoid membrane and the small subunit (SSU) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) of the stroma [22].
  • Ribulose bisphosphate carboxylase/oxygenase is commonly found in the cytoplasm, but a number of bacteria package much of the enzyme into polyhedral organelles, the carboxysomes [23].
  • Ribulose bisphosphate carboxylase (Rubisco) is localized in the chloroplasts of photosynthetic eukaryotic cells and is composed of small subunits (SS) and large subunits (LS) coded for by nuclear rbcS and chloroplast rbcL genes, respectively [24].
  • Two unique systems that link light-triggered events in thylakoid membranes with enzyme regulation are located in the soluble portion of chloroplasts (stroma): the ferredoxin-thioredoxin system and ribulose 1,5-bisphosphate carboxylase/oxygenase-Activase (Rubisco-Activase) [25].

Associations of xylulose with other chemical compounds


Gene context of xylulose


Analytical, diagnostic and therapeutic context of xylulose

  • The results of high-throughput protein production, crystallization, structure determination, homology modeling and functional annotation published by two such programs have provided insight into the evolution and function of enzymes in the isoprenoid biosynthesis and ribulose monophosphate pathways [36].
  • DNA was extracted from the samples and PCR amplified, using a variety of primer pairs designed to bind to different genes (mammal mitochondrial 12S ribosomal RNA gene, plant/fungal nuclear 18S ribosomal RNA gene, plant chloroplast ribulose bisphosphate carboxylase large subunit gene) [37].
  • We have studied the interactions with the enzyme of two inhibitors, xylulose 1,5-bisphosphate and 4-carboxyarabinitol 1,5-bisphosphate, by x-ray crystallography [38].
  • The product of the reaction was identified as D-ribulose by thin layer chromatography and by preparation of the O-nitrophenylhydrazone derivative [39].
  • Spontaneous refolding and reconstitution processes of dimeric ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodospirillum rubrum have been investigated using size-exclusion high performance liquid chromatography (HPLC), spectroscopic, and activity measurements [40].


  1. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Goloubinoff, P., Gatenby, A.A., Lorimer, G.H. Nature (1989) [Pubmed]
  2. Light-inducible and chloroplast-associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Herrera-Estrella, L., Van den Broeck, G., Maenhaut, R., Van Montagu, M., Schell, J., Timko, M., Cashmore, A. Nature (1984) [Pubmed]
  3. Truncation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodospirillum rubrum affects the holoenzyme assembly and activity. Ranty, B., Lundqvist, T., Schneider, G., Madden, M., Howard, R., Lorimer, G. EMBO J. (1990) [Pubmed]
  4. A cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. Pierce, J., Carlson, T.J., Williams, J.G. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  5. Behavior of transaldolase (EC and transketolase (EC Activities in normal, neoplastic, differentiating, and regenerating liver. Heinrich, P.C., Morris, H.P., Weber, G. Cancer Res. (1976) [Pubmed]
  6. Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose. Mayer, G., Kulbe, K.D., Nidetzky, B. Appl. Biochem. Biotechnol. (2002) [Pubmed]
  7. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Goloubinoff, P., Christeller, J.T., Gatenby, A.A., Lorimer, G.H. Nature (1989) [Pubmed]
  8. Demonstration by genetic suppression of interaction of GroE products with many proteins. Van Dyk, T.K., Gatenby, A.A., LaRossa, R.A. Nature (1989) [Pubmed]
  9. Tertiary structure of plant RuBisCO: domains and their contacts. Chapman, M.S., Suh, S.W., Curmi, P.M., Cascio, D., Smith, W.W., Eisenberg, D.S. Science (1988) [Pubmed]
  10. Cellular pattern of photosynthetic gene expression in developing maize leaves. Langdale, J.A., Rothermel, B.A., Nelson, T. Genes Dev. (1988) [Pubmed]
  11. Crystal structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate. Lundqvist, T., Schneider, G. J. Biol. Chem. (1991) [Pubmed]
  12. Crystal structure of Escherichia coli L-arabinose isomerase (ECAI), the putative target of biological tagatose production. Manjasetty, B.A., Chance, M.R. J. Mol. Biol. (2006) [Pubmed]
  13. Carbon isotope effect on carboxylation of ribulose bisphosphate catalyzed by ribulosebisphosphate carboxylase from Rhodospirillum rubrum. Roeske, C.A., O'Leary, M.H. Biochemistry (1985) [Pubmed]
  14. Reduction precedes cytidylyl transfer without substrate channeling in distinct active sites of the bifunctional CDP-ribitol synthase from Haemophilus influenzae. Zolli, M., Kobric, D.J., Brown, E.D. Biochemistry (2001) [Pubmed]
  15. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Posno, M., Heuvelmans, P.T., van Giezen, M.J., Lokman, B.C., Leer, R.J., Pouwels, P.H. Appl. Environ. Microbiol. (1991) [Pubmed]
  16. Ribulose bisphosphate carboxylase assembly: what is the role of the large subunit binding protein? Roy, H., Cannon, S. Trends Biochem. Sci. (1988) [Pubmed]
  17. Cell position and light influence C4 versus C3 patterns of photosynthetic gene expression in maize. Langdale, J.A., Zelitch, I., Miller, E., Nelson, T. EMBO J. (1988) [Pubmed]
  18. A point mutation in the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase affects holoenzyme assembly in Nicotiana tabacum. Avni, A., Edelman, M., Rachailovich, I., Aviv, D., Fluhr, R. EMBO J. (1989) [Pubmed]
  19. Synthesis and turnover of ribulose biphosphate carboxylase and of its subunits during the cell cycle of Chlamydomonas reinhardtii. Iwanij, V., Chua, N.H., Siekevitz, P. J. Cell Biol. (1975) [Pubmed]
  20. Locating active-site hydrogen atoms in D-xylose isomerase: time-of-flight neutron diffraction. Katz, A.K., Li, X., Carrell, H.L., Hanson, B.L., Langan, P., Coates, L., Schoenborn, B.P., Glusker, J.P., Bunick, G.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  21. Maize plastid photogenes: mapping and photoregulation of transcript levels during light-induced development. Rodermel, S.R., Bogorad, L. J. Cell Biol. (1985) [Pubmed]
  22. Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework. Karlin-Neumann, G.A., Tobin, E.M. EMBO J. (1986) [Pubmed]
  23. Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Shively, J.M., van Keulen, G., Meijer, W.G. Annu. Rev. Microbiol. (1998) [Pubmed]
  24. A mechanism for intergenomic integration: abundance of ribulose bisphosphate carboxylase small-subunit protein influences the translation of the large-subunit mRNA. Rodermel, S., Haley, J., Jiang, C.Z., Tsai, C.H., Bogorad, L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  25. The reductive pentose phosphate cycle for photosynthetic CO2 assimilation: enzyme modulation. Wolosiuk, R.A., Ballicora, M.A., Hagelin, K. FASEB J. (1993) [Pubmed]
  26. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. Dentin, R., Benhamed, F., Pégorier, J.P., Foufelle, F., Viollet, B., Vaulont, S., Girard, J., Postic, C. J. Clin. Invest. (2005) [Pubmed]
  27. Vitamin B6 biosynthesis in higher plants. Tambasco-Studart, M., Titiz, O., Raschle, T., Forster, G., Amrhein, N., Fitzpatrick, T.B. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  28. D-xylulose-induced depletion of ATP and Pi in isolated rat hepatocytes. Vincent, M.F., Van den Berghe, G., Hers, H.G. FASEB J. (1989) [Pubmed]
  29. A mechanism for fatty acid inhibition of glucose utilization in liver. Role of xylulose 5-P. Liu, Y.Q., Uyeda, K. J. Biol. Chem. (1996) [Pubmed]
  30. Ribulose diphosphate carboxylase/oxygenase. III. Isolation and properties. Ryan, F.J., Tolbert, N.E. J. Biol. Chem. (1975) [Pubmed]
  31. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Johansson, B., Christensson, C., Hobley, T., Hahn-Hägerdal, B. Appl. Environ. Microbiol. (2001) [Pubmed]
  32. The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway. Orita, I., Yurimoto, H., Hirai, R., Kawarabayasi, Y., Sakai, Y., Kato, N. J. Bacteriol. (2005) [Pubmed]
  33. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. Yew, W.S., Gerlt, J.A. J. Bacteriol. (2002) [Pubmed]
  34. Transcription control of ribulose bisphosphate carboxylase/oxygenase activase and adjacent genes in Anabaena species. Li, L.A., Tabita, F.R. J. Bacteriol. (1994) [Pubmed]
  35. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Juhnke, H., Krems, B., Kötter, P., Entian, K.D. Mol. Gen. Genet. (1996) [Pubmed]
  36. Structural genomics of proteins from conserved biochemical pathways and processes. Burley, S.K., Bonanno, J.B. Curr. Opin. Struct. Biol. (2002) [Pubmed]
  37. Otzi's last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Rollo, F., Ubaldi, M., Ermini, L., Marota, I. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  38. A common structural basis for the inhibition of ribulose 1,5-bisphosphate carboxylase by 4-carboxyarabinitol 1,5-bisphosphate and xylulose 1,5-bisphosphate. Taylor, T.C., Fothergill, M.D., Andersson, I. J. Biol. Chem. (1996) [Pubmed]
  39. Purification, crystallization, and properties of D-ribose isomerase from Mycobacterium smegmatis. Izumori, K., Rees, A.W., Elbein, A.D. J. Biol. Chem. (1975) [Pubmed]
  40. The dimerization of folded monomers of ribulose 1,5-bisphosphate carboxylase/oxygenase. Luo, S., Wang, Z.Y., Kobayashi, M., Nozawa, T. J. Biol. Chem. (2001) [Pubmed]
WikiGenes - Universities