An excitatory amino-acid transporter with properties of a ligand-gated chloride channel.
Excitatory amino-acid transporters (EAATs) in the central nervous system maintain extracellular glutamate concentrations below excitotoxic levels and may limit the activation of glutamate receptors. Here we report the cloning of a novel human aspartate/glutamate transporter, EAAT4, which is expressed predominantly in the cerebellum. The transport activity encoded by EAAT4 has high apparent affinity for L-aspartate and L-glutamate, and has a pharmacological profile consistent with previously described cerebellar transport activities. In Xenopus oocytes expressing EAAT4, L-aspartate and L-glutamate elicited a current predominantly carried by chloride ions. This chloride conductance was not blocked by components that block endogenous oocyte chloride channels. Thus EAAT4 combines the re-uptake of neurotransmitter with a mechanism for increasing chloride permeability, both of which could regulate excitatory neurotransmission.[1]References
- An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Fairman, W.A., Vandenberg, R.J., Arriza, J.L., Kavanaugh, M.P., Amara, S.G. Nature (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg