The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effects of an indene-derivative, TN-871, on synaptic transmission in a sympathetic ganglion: presynaptic actions on neurotransmitter release.

Intracellular recordings were made from bullfrog sympathetic ganglion cells to elucidate effects of 2-n-butyl-1-(4-methylpiperazinyl)-5,6-methylenedioxyindene.2 HCl (TN-871) on synaptic transmission. TN-871 at 30 nM augmented cholinergic nicotinic fast excitatory postsynaptic potentials (fast EPSPs), whereas the drug at 3 microM reversibly depressed them, without affecting acetylcholine-induced depolarizations. TN-871 did not affect active and passive electrical properties of the ganglion cells. The quantal analysis method was applied to the fast EPSPs in a 0.54 mM Ca2+/7.56 mM Mg2+ Ringer's solution. The mean quantal content was significantly increased by TN-871 at 30 nM but significantly decreased at 3 microM. TN-871 at 300 nM either increased or decreased the mean quantal content. The mean quantal size of the fast EPSPs was not changed by TN-871 at the concentrations examined. Fast EPSPs in a 0.99 mM Ca2+/4.86 mM Mg2+ Ringer's solution were not affected by nicardipine, but were inhibited in amplitude by omega-conotoxin in a concentration-dependent manner. It is likely that TN-871, in high concentrations, might block omega-conotoxin-sensitive N-type calcium channels in the presynaptic terminals. These results indicate that TN-871 modulates transmitter release from preganglionic nerve terminals without changing the postsynaptic sensitivity of the ganglion cells to ACh.[1]

References

 
WikiGenes - Universities