The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

REPLICAtion of small plasmids in extracts of Escherichia coli: requirement for both DNA polymerases I and II.

The role of the three E. coli DNA polymerases (pol I, II, and III) in the replication of Col E1 DNA and other small plasmids with similar replicative properties was investigated in a soluble in vitro system prepared by freeze-thaw lysis of chloramphenicol-treated cells (Staudenbauer, 1976). Extracts from isogenic mutants of the polA, polB and polC gene loci deficient in pol I, II, and III respectively were examined for their replicative capacity. It was found that polA and polC extracts are deficient in the synthesis of supercoiled plasmid DNA, whereas the polB mutation has not effect. Deficient extracts could be complemented by addition of purified pol I and pol III holoenzyme. Analysis of the in vitro synthesized DNA by alkaline gradient centrifugation indicates that pol I is involved in an early step of the replication cycle whereas pol III is required at a later stage. These conclusions are confirmed by inhibition studies employing arabionsylcytosine triphosphate (aCTP) which is shown to interfere with pol III as well as pol II. The strong inhibitory effect of aCTP on plasmid replication is not influenced by the polB mutation and mimicks the effects of thermal inactivation of polC extracts. It is suggested that aCTP blocks plasmid ENA replication in vitro by interfering with pol III function[1]


WikiGenes - Universities