The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

dnaE  -  DNA polymerase III alpha subunit

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK0183, JW0179, polC, sdgC
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of dnaE

  • However, viable dnaQ926 strains could be obtained if they contained one of the dnaE alleles previously characterized in our laboratory as antimutator alleles or if it carried a multicopy plasmid containing the E. coli mutL+ gene [1].
  • The induction of prophage lambda by ultraviolet light has been measured in E. coli K12 lysogenic cells deficient in DNA polymerase I. The efficiency of the induction process was greater in polA1 polC(dnaE) double mutants incubated at the temperature that blocks DNA replication than in polA+ polC single mutants [2].
  • Bacillus subtilis genome analysis has revealed another DNA polymerase gene, dnaE(BS), which is homologous to dnaE [3].
  • A temperature-sensitive mutation in the dnaE gene of Caulobacter crescentus that prevents initiation of DNA replication but not ongoing elongation of DNA [4].
  • Protein trans-splicing by the naturally split intein of the gene dnaE from Nostoc punctiforme (Npu DnaE) was demonstrated here with non-native exteins in Escherichia coli [5].

High impact information on dnaE

  • Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants [6].
  • Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles [7].
  • Possible roles of the P. aeruginosa dinB, polA, and polC gene products in mutagenesis are discussed [8].
  • Temperature-sensitive DNA polymerase mutants (dnaE) are protected from cell death on incubation at nonpermissive temperature by mutation in the cydA gene controlling cytochrome bd oxidase [9].
  • Filamentation per se is not the cause of cell death, because the dnaE cydA double mutant forms long filaments after 24 h of incubation in LB medium at nonpermissive temperature [9].

Chemical compound and disease context of dnaE


Biological context of dnaE

  • Previous studies in our laboratory have identified a set of mutations in the Escherichia coli dnaE gene that confer increased accuracy of DNA replication (antimutators) [10].
  • The dnaE gene encodes the polymerase subunit of DNA polymerase III holoenzyme that replicates the E. coli chromosome [10].
  • Sequencing of the temperature-sensitive dnaE allele indicated a single base pair substitution resulting in a change from valine to glutamic acid within the C-terminal portion of the protein [4].
  • Genomic DNA encompassing polC, the structural gene specifying Bacillus subtilis DNA polymerase III (PolIII), was sequenced and found to contain a 4311-bp open reading frame (ORF) encoding a 162.4-kDa polypeptide of 1437 amino acids (aa) [13].
  • Previously we cloned and sequenced the polC gene of Bacillus subtilis and identified regions corresponding to various catalytic domains of DNA polymerase III, the enzyme it encodes [14].

Associations of dnaE with chemical compounds

  • Inhibition of DNA synthesis caused by shifting a culture of a polC mutant or a dnaB mutant to nonpermissive growth conditions resulted in an increase in the rate of RDP reductase mRNA synthesis similar to that observed for a thymine-starved culture [15].
  • Disruption of either sdgA or sdgC blocked salicylate degradation; constructs lacking sdgD accumulated gentisate [16].
  • The cloned DNA fragments were subjected to restriction and partial sequence analysis to locate the 5' end of the polC-specific coding sequence and the azp12 mutation, which was identified as a T----G transversion specifying replacement of serine with alanine [17].

Other interactions of dnaE

  • The strong inhibitory effect of aCTP on plasmid replication is not influenced by the polB mutation and mimicks the effects of thermal inactivation of polC extracts [18].
  • Extracts from isogenic mutants of the polA, polB and polC gene loci deficient in pol I, II, and III respectively were examined for their replicative capacity [18].

Analytical, diagnostic and therapeutic context of dnaE


  1. Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe. Fijalkowska, I.J., Schaaper, R.M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  2. Prophage induction in Escherichia coli K12 cells deficient in DNA polymerase I. Blanco, M., Pomes, L. Mol. Gen. Genet. (1977) [Pubmed]
  3. Two essential DNA polymerases at the bacterial replication fork. Dervyn, E., Suski, C., Daniel, R., Bruand, C., Chapuis, J., Errington, J., Jannière, L., Ehrlich, S.D. Science (2001) [Pubmed]
  4. A temperature-sensitive mutation in the dnaE gene of Caulobacter crescentus that prevents initiation of DNA replication but not ongoing elongation of DNA. Lo, T., van Der Schalie, E., Werner, T., Brun, Y.V., Din, N. J. Bacteriol. (2004) [Pubmed]
  5. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. Iwai, H., Züger, S., Jin, J., Tam, P.H. FEBS Lett. (2006) [Pubmed]
  6. Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Saveson, C.J., Lovett, S.T. Genetics (1997) [Pubmed]
  7. Antimutator mutations in the alpha subunit of Escherichia coli DNA polymerase III: identification of the responsible mutations and alignment with other DNA polymerases. Fijalkowska, I.J., Schaaper, R.M. Genetics (1993) [Pubmed]
  8. Role of Pseudomonas aeruginosa dinB-Encoded DNA Polymerase IV in Mutagenesis. Sanders, L.H., Rockel, A., Lu, H., Wozniak, D.J., Sutton, M.D. J. Bacteriol. (2006) [Pubmed]
  9. Cytochrome oxidase deficiency protects Escherichia coli from cell death but not from filamentation due to thymine deficiency or DNA polymerase inactivation. Strauss, B., Kelly, K., Ekiert, D. J. Bacteriol. (2005) [Pubmed]
  10. Effect of Escherichia coli dnaE antimutator mutants on mutagenesis by the base analog N4-aminocytidine. Schaaper, R.M., Dunn, R.L. Mutat. Res. (1998) [Pubmed]
  11. Identification of Escherichia coli dnaE (polC) mutants with altered sensitivity to 2',3'-dideoxyadenosine. Hiratsuka, K., Reha-Krantz, L.J. J. Bacteriol. (2000) [Pubmed]
  12. PolC-type polymerase III of Streptococcus pyogenes and its use in screening for chemical inhibitors. Yang, F., Dicker, I.B., Kurilla, M.G., Pompliano, D.L. Anal. Biochem. (2002) [Pubmed]
  13. Bacillus subtilis DNA polymerase III: complete sequence, overexpression, and characterization of the polC gene. Hammond, R.A., Barnes, M.H., Mack, S.L., Mitchener, J.A., Brown, N.C. Gene (1991) [Pubmed]
  14. Leader region of the gene encoding DNA polymerase III of Bacillus subtilis. Sanjanwala, B., Ganesan, A.T. Mol. Gen. Genet. (1993) [Pubmed]
  15. Regulation of ribonucleoside diphosphate reductase mRNA synthesis in Escherichia coli. Hanke, P.D., Fuchs, J.A. J. Bacteriol. (1983) [Pubmed]
  16. Novel pathway of salicylate degradation by Streptomyces sp. strain WA46. Ishiyama, D., Vujaklija, D., Davies, J. Appl. Environ. Microbiol. (2004) [Pubmed]
  17. The cloned polC gene of Bacillus subtilis: characterization of the azp12 mutation and controlled in vitro synthesis of active DNA polymerase III. Barnes, M.H., Hammond, R.A., Foster, K.A., Mitchener, J.A., Brown, N.C. Gene (1989) [Pubmed]
  18. REPLICAtion of small plasmids in extracts of Escherichia coli: requirement for both DNA polymerases I and II. Staudenbauer, W.L. Mol. Gen. Genet. (1976) [Pubmed]
  19. Sequence analysis of the Escherichia coli dnaE gene. Tomasiewicz, H.G., McHenry, C.S. J. Bacteriol. (1991) [Pubmed]
  20. Cloning and characterization of the polC region of Bacillus subtilis. Ott, R.W., Barnes, M.H., Brown, N.C., Ganesan, A.T. J. Bacteriol. (1986) [Pubmed]
WikiGenes - Universities