The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity.

The recent model of Treponema pallidum molecular architecture proposes that the vast majority of the bacterium's integral membrane proteins are lipoprotein immunogens anchored in the cytoplasmic membrane while the outer membrane contains only a limited number of surface-exposed transmembrane proteins. This unique model explains, in part, the organism's remarkable ability to evade host immune defenses and establish persistent infection. Our strategy for refining this model involves demonstrating that the physiological functions of treponemal membrane proteins are consistent with their proposed cellular locations. In this study, we used an ampicillin-digoxigenin conjugate to demonstrate by chemiluminescence that the 47-kDa lipoprotein immunogen of T. pallidum (Tpp47) is a penicillin-binding protein. Reexamination of the Tpp47 primary sequence revealed the three amino acid motifs characteristic of penicillin-binding proteins. A recombinant, nonlipidated, soluble form of Tpp47 was used to demonstrate that Tpp47 is a zinc-dependent carboxypeptidase. Escherichia coli expressing Tpp47 was characterized by cell wall abnormalities consistent with altered peptidoglycan biosynthesis. Though the inability to cultivate T. pallidum in vitro and the lack of genetic exchange systems continue to impede treponemal research, this study advances strategies for utilizing E. coli molecular genetics as a means of elucidating the complex relationships between syphilis pathogenesis and T. pallidum membrane biology.[1]

References

 
WikiGenes - Universities