The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Treponema

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Treponema

  • Isolation of a Treponema pallidum gene encoding immunodominant outer envelope protein P6, which reacts with sera from patients at different stages of syphilis [1].
  • A new class of outer membrane lipid (OML) was isolated from the oral spirochete Treponema denticola strain ATCC 33521 using a phenol/chloroform/light petroleum procedure normally applied for lipopolysaccharide extraction [2].
  • However, direct amino acid sequence of the 66- and 68-kDa Ag was almost identical and had a high level of sequence similarity to the GroEL heat-shock protein (Hsp60) of Escherichia coli and the 60-kDa immunodominant protein of Treponema pallidum [3].
  • Activation of human monocytic cells by Borrelia burgdorferi and Treponema pallidum is facilitated by CD14 and correlates with surface exposure of spirochetal lipoproteins [4].
  • The translated H. pylori flgE sequence indicated a protein with limited homology with the hook proteins from Salmonella typhimurium and Treponema phagedenis [5].
 

Psychiatry related information on Treponema

 

High impact information on Treponema

  • Treponema reiteri lack tubulin by these same criteria [7].
  • Re: persistence of Treponema pallidum following penicillin G therapy [8].
  • The TprK protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity [9].
  • Treponema pallidum receptor binding proteins interact with fibronectin [10].
  • Receptor binding proteins of Treponema pallidum were identified by incubation of [35S]methionine-labeled, soluble T. pallidum preparations with formaldehyde-fixed HEp-2 cells [11].
 

Chemical compound and disease context of Treponema

  • Cystalysin is a C(beta)-S(gamma) lyase from the oral pathogen Treponema denticola catabolyzing L-cysteine to produce pyruvate, ammonia and H(2)S [12].
  • Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5'-phosphate-dependent protein acting as a haemolytic enzyme [12].
  • Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum [13].
  • In addition to alpha, beta-elimination of L-cysteine, Treponema denticola cystalysin catalyzes the racemization of both enantiomers of alanine accompanied by an overall transamination [14].
  • Autoantibodies to creatine kinase in rabbits infected with Treponema pallidum [15].
 

Biological context of Treponema

 

Anatomical context of Treponema

 

Gene context of Treponema

  • These results indicate the presence of a novel class of glycolipids in Treponema initiating inflammatory responses involving LBP, CD14, and TLRs [25].
  • We observed that membrane lipoproteins/lipopeptides from Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans activated cells heterologously expressing TLR2 but not those expressing TLR1 or TLR4 [26].
  • Mutagenesis of a novel gene in the prcA-prtP protease locus affects expression of Treponema denticola membrane complexes [27].
  • Treponema pallidum, its membrane lipoproteins, and synthetic lipoprotein analogues (lipopeptides) were each examined to determine whether they induced CCR5 expression on human peripheral blood mononuclear cells (PBMC) [28].
  • Downstream of flaB3, a putative fliD homologue was found, probably encoding the flagellar cap protein of Treponema maltophilum [29].
 

Analytical, diagnostic and therapeutic context of Treponema

References

  1. Isolation of a Treponema pallidum gene encoding immunodominant outer envelope protein P6, which reacts with sera from patients at different stages of syphilis. Peterson, K.M., Baseman, J.B., Alderete, J.F. J. Exp. Med. (1986) [Pubmed]
  2. Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola. Functioning permeation barrier without lipopolysaccharides. Schultz, C.P., Wolf, V., Lange, R., Mertens, E., Wecke, J., Naumann, D., Zähringer, U. J. Biol. Chem. (1998) [Pubmed]
  3. Immunologic and structural characterization of the dominant 66- to 73-kDa antigens of Borrelia burgdorferi. Luft, B.J., Gorevic, P.D., Jiang, W., Munoz, P., Dattwyler, R.J. J. Immunol. (1991) [Pubmed]
  4. Activation of human monocytic cells by Borrelia burgdorferi and Treponema pallidum is facilitated by CD14 and correlates with surface exposure of spirochetal lipoproteins. Sellati, T.J., Bouis, D.A., Caimano, M.J., Feulner, J.A., Ayers, C., Lien, E., Radolf, J.D. J. Immunol. (1999) [Pubmed]
  5. Non-motile mutants of Helicobacter pylori and Helicobacter mustelae defective in flagellar hook production. O'Toole, P.W., Kostrzynska, M., Trust, T.J. Mol. Microbiol. (1994) [Pubmed]
  6. Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease. Miklossy, J., Khalili, K., Gern, L., Ericson, R.L., Darekar, P., Bolle, L., Hurlimann, J., Paster, B.J. J. Alzheimers Dis. (2004) [Pubmed]
  7. Microtubules in prokaryotes. Margulis, L., To, L., Chase, D. Science (1978) [Pubmed]
  8. Re: persistence of Treponema pallidum following penicillin G therapy. Jaffe, H.W., Thompson, S.E. JAMA (1977) [Pubmed]
  9. The TprK protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity. Hazlett, K.R., Sellati, T.J., Nguyen, T.T., Cox, D.L., Clawson, M.L., Caimano, M.J., Radolf, J.D. J. Exp. Med. (2001) [Pubmed]
  10. Treponema pallidum receptor binding proteins interact with fibronectin. Peterson, K.M., Baseman, J.B., Alderete, J.F. J. Exp. Med. (1983) [Pubmed]
  11. Molecular characterization of receptor binding proteins and immunogens of virulent Treponema pallidum. Baseman, J.B., Hayes, E.C. J. Exp. Med. (1980) [Pubmed]
  12. Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5'-phosphate-dependent protein acting as a haemolytic enzyme. Krupka, H.I., Huber, R., Holt, S.C., Clausen, T. EMBO J. (2000) [Pubmed]
  13. Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. Posey, J.E., Hardham, J.M., Norris, S.J., Gherardini, F.C. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  14. Site-directed mutagenesis provides insight into racemization and transamination of alanine catalyzed by Treponema denticola cystalysin. Cellini, B., Bertoldi, M., Paiardini, A., D'Aguanno, S., Voltattorni, C.B. J. Biol. Chem. (2004) [Pubmed]
  15. Autoantibodies to creatine kinase in rabbits infected with Treponema pallidum. Strugnell, R.A., Williams, W.F., Raines, G., Pedersen, J.S., Drummond, L.P., Toh, B.H., Faine, S. J. Immunol. (1986) [Pubmed]
  16. The PnrA (Tp0319; TmpC) lipoprotein represents a new family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC)-like operon in Treponema pallidum. Deka, R.K., Brautigam, C.A., Yang, X.F., Blevins, J.S., Machius, M., Tomchick, D.R., Norgard, M.V. J. Biol. Chem. (2006) [Pubmed]
  17. Purification and substrate specificity of an endopeptidase from the human oral spirochete Treponema denticola ATCC 35405, active on furylacryloyl-Leu-Gly-Pro-Ala and bradykinin. Mäkinen, K.K., Mäkinen, P.L., Syed, S.A. J. Biol. Chem. (1992) [Pubmed]
  18. Molecular mimicry between an immunodominant amino acid motif on the 47-kDa lipoprotein of Treponema pallidum (Tpp47) and multiple repeats of analogous sequences in fibronectin. Baughn, R.E., Jiang, A., Abraham, R., Ottmers, V., Musher, D.M. J. Immunol. (1996) [Pubmed]
  19. A CDP-choline pathway for phosphatidylcholine biosynthesis in Treponema denticola. Kent, C., Gee, P., Lee, S.Y., Bian, X., Fenno, J.C. Mol. Microbiol. (2004) [Pubmed]
  20. Isolation and characterization of recombinant Escherichia coli clones secreting a 24-kilodalton antigen of Treponema pallidum. Hsu, P.L., Qin, M., Norris, S.J., Sell, S. Infect. Immun. (1988) [Pubmed]
  21. Filamentous actin disruption and diminished inositol phosphate response in gingival fibroblasts caused by Treponema denticola. Yang, P.F., Song, M., Grove, D.A., Ellen, R.P. Infect. Immun. (1998) [Pubmed]
  22. Antibody-independent interactions of fibronectin, C1q, and human neutrophils with Treponema pallidum. Baughn, R.E. Infect. Immun. (1986) [Pubmed]
  23. Activation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola. Rosen, G., Sela, M.N., Naor, R., Halabi, A., Barak, V., Shapira, L. Infect. Immun. (1999) [Pubmed]
  24. Treponemal glycoconjugate inhibits Toll-like receptor ligand-induced cell activation by blocking LPS-binding protein and CD14 functions. Asai, Y., Hashimoto, M., Ogawa, T. Eur. J. Immunol. (2003) [Pubmed]
  25. Involvement of lipopolysaccharide binding protein, CD14, and Toll-like receptors in the initiation of innate immune responses by Treponema glycolipids. Schröder, N.W., Opitz, B., Lamping, N., Michelsen, K.S., Zähringer, U., Göbel, U.B., Schumann, R.R. J. Immunol. (2000) [Pubmed]
  26. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. Lien, E., Sellati, T.J., Yoshimura, A., Flo, T.H., Rawadi, G., Finberg, R.W., Carroll, J.D., Espevik, T., Ingalls, R.R., Radolf, J.D., Golenbock, D.T. J. Biol. Chem. (1999) [Pubmed]
  27. Mutagenesis of a novel gene in the prcA-prtP protease locus affects expression of Treponema denticola membrane complexes. Bian, X.L., Wang, H.T., Ning, Y., Lee, S.Y., Fenno, J.C. Infect. Immun. (2005) [Pubmed]
  28. Virulent Treponema pallidum, lipoprotein, and synthetic lipopeptides induce CCR5 on human monocytes and enhance their susceptibility to infection by human immunodeficiency virus type 1. Sellati, T.J., Wilkinson, D.A., Sheffield, J.S., Koup, R.A., Radolf, J.D., Norgard, M.V. J. Infect. Dis. (2000) [Pubmed]
  29. A flagellar gene cluster from the oral spirochaete Treponema maltophilum. Heuner, K., Grosse, K., Schade, R., Gobel, U.B. Microbiology (Reading, Engl.) (2000) [Pubmed]
  30. Syphilis serology in human immunodeficiency virus infection: evidence for false-negative fluorescent treponemal testing. Erbelding, E.J., Vlahov, D., Nelson, K.E., Rompalo, A.M., Cohn, S., Sanchez, P., Quinn, T.C., Brathwaite, W., Thomas, D.L. J. Infect. Dis. (1997) [Pubmed]
  31. Demonstration by labeled treponemal antigen of specific antibodies in the tissue infiltrates of secondary syphilis. Soltani, K., Choy, R.K., Lorincz, A.L. J. Invest. Dermatol. (1977) [Pubmed]
  32. Molecular cloning and characterization of a 35.5-kilodalton lipoprotein of Treponema pallidum. Hubbard, C.L., Gherardini, F.C., Bassford, P.J., Stamm, L.V. Infect. Immun. (1991) [Pubmed]
  33. Redox-dependent structural changes in the superoxide reductase from Desulfoarculus baarsii and Treponema pallidum: a FTIR study. Berthomieu, C., Dupeyrat, F., Fontecave, M., Verméglio, A., Nivière, V. Biochemistry (2002) [Pubmed]
 
WikiGenes - Universities