The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The HAP2,3,4 transcriptional activator is required for derepression of the yeast citrate synthase gene, CIT1.

The yeast nuclear gene CIT1 encodes mitochondrial citrate synthase, which catalyses the first and rate-limiting step of the tricarboxylic acid (TCA) cycle. Transcription of CIT1 is subject to glucose repression. Mutations in HAP2, HAP3 or HAP4 block derepression of a CIT1-lacZ gene fusion. The HAP2,3,4 transcriptional activator also activates nuclear genes encoding components of the mitochondrial electron transport chain, and thus it co-ordinates derepression of two major mitochondrial functions. Two DNA sequences resembling the consensus HAP2,3,4-binding site (ACCAATNA) are located at approximately -310 and -290, upstream of the CIT1 coding sequence. Deletion and mutation analysis indicates that the -290 element is critical for activation by HAP2,3,4. Glucose-repressed expression of CIT1 is largely independent of HAP2,3,4, is repressed by glutamate, and requires a DNA sequence between -367 and -348. Evidence is presented for a second HAP2,3,4-independent activation element located just upstream and overlapping the -290 HAP2,3,4 element.[1]

References

  1. The HAP2,3,4 transcriptional activator is required for derepression of the yeast citrate synthase gene, CIT1. Rosenkrantz, M., Kell, C.S., Pennell, E.A., Devenish, L.J. Mol. Microbiol. (1994) [Pubmed]
 
WikiGenes - Universities