The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A single stranded DNA binding protein isolated from HeLa cells facilitates Ni2+ activation of DNA polymerases in vitro.

The divalent nickel ion (Ni2+) is one of several metal ions that can substitute for Mg2+ in the activation of DNA polymerases in vitro, but usually with very low efficiency. We have purified and partially characterized a Ni(2+)-binding protein ( p40) from HeLa cell extracts that can specifically enhance the polymerase activity of DNA polymerase alpha (pol alpha) and other DNA polymerases in response to Ni2+. This protein, with a molecular mass of 40 kDa, is a single stranded DNA binding protein that binds to a M13 DNA template-primer with an optimum stoichiometry of approximately 90 equiv of protein per equiv of DNA template and enhances the affinity of pol alpha for the primer-template. In the presence of Ni2+, p40 exhibits an increased affinity for DNA. The p40 increased by 3- to 6-fold the rates at which pol alpha and the Klenow fragment of Escherichia coli DNA polymerase I (KF) replicate different DNA templates in response to Ni2+. The low processivity of Ni(2+)-activated pol on primed M13 ssDNA was also enhanced by the presence of p40. The rates of Ni(2+)-dependent replication by inherently more processive enzymes, DNA polymerase delta and T4 DNA polymerase, were not significantly increased by p40 when M13 ssDNA was used as a template; however, p40 did increase the activity of T4 polymerase on an activated calf thymus DNA template. The protein did not stimulate Mg(2+)-activated DNA replication.[1]

References

 
WikiGenes - Universities