The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Eugenol triggers different pathobiological effects on human oral mucosal fibroblasts.

Pathobiological effects of eugenol (4-allyl-2-methoxyphenol), a major constituent of betel quid (BQ), were studied on oral mucosal fibroblasts. At a concentration higher than 3 mmol/L, eugenol was cytotoxic to oral mucosal fibroblasts in a concentration- and time-dependent manner. Cell death was associated with intracellular depletion of glutathione (GSH). Most of the GSH was depleted prior to the onset of cell death. At concentrations of 3 mmol/L and 4 mmol/L, eugenol depleted about 45% and 77% of GSH after one-hour incubation. In addition, eugenol decreased cellular ATP level in a concentration- and time-dependent manner. Eugenol also inhibited lipid peroxidation. Inhibition of lipid peroxidation was partially explained by its dose-dependent inhibition of xanthine oxidase activity. The IC50 of eugenol on xanthine oxidase activity was about 0.3 mmol/L. No DNA strand break activity for eugenol was found at concentrations between 0.5 and 3 mmol/L. Taken together, frequent exposure of oral mucosa to a high concentration of eugenol during the chewing of BQ might be involved in the pathogenesis of oral submucous fibrosis and oral cancer via its cytotoxicity. In contrast, eugenol at a concentration less than 1 mmol/L might protect cells from the genetic attack of reactive oxygen species via inhibition of xanthine oxidase activity and lipid peroxidation.[1]

References

  1. Eugenol triggers different pathobiological effects on human oral mucosal fibroblasts. Jeng, J.H., Hahn, L.J., Lu, F.J., Wang, Y.J., Kuo, M.Y. J. Dent. Res. (1994) [Pubmed]
 
WikiGenes - Universities