The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evidence for the importance of hydrophobic residues in the interactions between the cAMP-dependent protein kinase catalytic subunit and the protein kinase inhibitors.

The protein kinase inhibitors (PKIs) are potent inhibitors of the catalytic (C) subunit of cAMP-dependent protein kinase. In this study, the interaction between Phe10 of PKI and the C subunit residues Tyr235 and Phe239 was investigated using site-directed mutagenesis. Previous peptide studies as well as the crystal structure suggested that these residues may play a key role in C-PKI binding. The C subunit codons for Tyr235 and Phe239 were changed singly and in combination to serine codons. The mutated C alpha proteins were overexpressed in Escherichia coli. The purified C alpha Y235S, C alpha F239S, and C alpha Y235S/F239S proteins did not exhibit any differences in their Km(app) for the peptide substrate Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) or Vmax(app), with respect to wild-type C alpha. All of the C subunit mutants displayed less than 2-fold changes in their Km(app) for ATP. The PKI alpha isoform displayed increased IC50 values for C alpha Y235S (71-fold), C alpha F239S (150-fold), and C alpha Y235S/F239S (1800-fold). Similarly, the PKI beta 1 protein showed increased IC50 values against the C alpha Y235S, C alpha F239S, and C alpha Y235S/F239S proteins, 9.4-, 11-, and 44-fold, respectively. In addition, the PKI alpha F10 codon was altered to an alanine codon, and this mutation decreased its ability to inhibit C alpha kinase activity, but did not affect its ability to inhibit C alpha Y235S/F239S. The mutation of Tyr235 and Phe239 to serines, however, did not alter the ability of the type II R subunit to inhibit phosphotransferase activity. These results suggest that C alpha Y235 and C alpha F239 are important for specific inhibition by both PKI alpha and PKI beta but not the type II R subunit and that mutations at these residues would be useful for in vivo analysis of C-PKI interactions.[1]

References

 
WikiGenes - Universities