The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Kemptide     2-[[2-[[2-[2-[[2-[[2-[(2- amino-4-methyl...

Synonyms: NSC-332190, AC1L2NZR, AC1Q5KWN, NSC332190, AR-1J3142, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Kemptide

 

High impact information on Kemptide

 

Biological context of Kemptide

  • The kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase has been investigated employing the heptapeptide Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) as substrate [8].
  • Kinetic characterization of the PKA sites demonstrated phosphorylation kinetics comparable to Kemptide [9].
  • Acetylation of the terminal amino group of Leu-Arg-Arg-Ala-Ser-Leu-Gly lowered the Km for this substrate from 16 micrometer to 3 micrometer, but a similar modification of the inhibitory analogue Leu-Arg-Arg-Ala-Ala-Leu-Gly resulted in no major change in the Ki value [10].
  • Using histone H1 as a selective probe for MAK-H and S6 peptide or Kemptide as probes for MAK-S, the kinase activities comprising these peaks were found to cycle with the meiotic cell cycle [11].
  • In contrast, several nonphosphorylatable peptides, whose primary sequences are based on that of a known substrate (i.e. Leu-Arg-Arg-Ala-Ser-Leu-Gly), such as Leu-Arg-Arg-Ala-Ala-Leu-Gly, Leu-Arg-Arg-Ala-Phe-Leu-Gly, and Leu-Arg-Arg-Ala-Tyr-Leu-Gly, have little or no effect on the rate of the kinase-catalyzed hydrolysis of ATP [12].
 

Anatomical context of Kemptide

  • A model synthetic peptide substrate of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase; EC 2.7.1.37), Leu-Arg-Arg-Ala-Ser-Leu-Gly, closely resembling the local phosphorylation site sequence in porcine hepatic pyruvate kinase, was shown to be phosphorylated in vivo after microinjection into Xenopus oocytes [13].
  • Based on these data, we conclude 1) a novel insulin-sensitive Kemptide kinase in liver cytosol has been purified to near homogeneity, and 2) insulin administration acutely modulates the specific activity of this Kemptide kinase in livers of intact rats [14].
  • Proteolysis led to dissociation of the B subunit from the enzyme complex and correlated with an increase in cardiac myosin light chain, smooth muscle myosin light chain peptide, and Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) phosphatase activity [15].
  • The cytosolic fraction of insulin-treated adipocytes exhibits a 2-fold increase in protein kinase activity when Kemptide is used as a substrate [16].
  • The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg) [17].
 

Associations of Kemptide with other chemical compounds

 

Gene context of Kemptide

  • Yeast cAPK (encoded by the TPK1 gene) phosphorylated Ser-230 in the synthetic peptide ADR1-217-234, VRKRYLKKLTRRASFSAQ-NH2, with a Km of 5.3 microM compared with 46 microM for LRRASLG (Kemptide) [23].
  • Porcine heart cAPK phosphorylated the ADR1 peptide and Kemptide with the considerable lower Km values of 0.23 and 1.6 microM, respectively [23].
  • In vitro measurements with trehalase and kemptide as substrates confirmed that elimination of sch9 enhances cAPK activity about two- to threefold, in both the absence and presence of cAMP [24].
  • TPK2 complements the growth defect of a Saccharomyces cerevisiae tpk1-3 mutant and Tpk2p is able to phosphorylate an established PKA-acceptor peptide (kemptide) [25].
  • (1) Insulin treatment of CHO cells over-expressing wild-type insulin receptors resulted in the rapid and substantial (5-10-fold) activation of cytosolic protein kinases which phosphorylated myelin basic protein, Kemptide and two peptide substrates based on sites phosphorylated on ribosomal protein S6 in vivo [26].
 

Analytical, diagnostic and therapeutic context of Kemptide

References

  1. Molecular cloning and expression of the catalytic subunit of protein kinase A from Trypanosoma cruzi. Huang, H., Werner, C., Weiss, L.M., Wittner, M., Orr, G.A. Int. J. Parasitol. (2002) [Pubmed]
  2. Protein kinase A regulatory subunits in colon cancer. Carlson, C.C., Smithers, S.L., Yeh, K.A., Burnham, L.L., Dransfield, D.T. Neoplasia (1999) [Pubmed]
  3. Probing the peptide binding site of the cAMP-dependent protein kinase by using a peptide-based photoaffinity label. Miller, W.T., Kaiser, E.T. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  4. Insulin stimulates a membrane-bound serine kinase that may be phosphorylated on tyrosine. Yu, K.T., Khalaf, N., Czech, M.P. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  5. Effect of phorbol ester on cyclic adenosine 3':5'-monophosphate-dependent protein kinases in PYS teratocarcinoma-derived cells and counteraction with retinoic acid. Plet, A., Gerbaud, P., Anderson, W.B., Evain-Brion, D. Cancer Res. (1988) [Pubmed]
  6. In vivo and in vitro phosphorylation of two isoforms of yeast pyruvate kinase by protein kinase A. Portela, P., Howell, S., Moreno, S., Rossi, S. J. Biol. Chem. (2002) [Pubmed]
  7. Protein kinase A associates with cystic fibrosis transmembrane conductance regulator via an interaction with ezrin. Sun, F., Hug, M.J., Bradbury, N.A., Frizzell, R.A. J. Biol. Chem. (2000) [Pubmed]
  8. Studies on the kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase. Whitehouse, S., Feramisco, J.R., Casnellie, J.E., Krebs, E.G., Walsh, D.A. J. Biol. Chem. (1983) [Pubmed]
  9. Kv4.2 phosphorylation by cyclic AMP-dependent protein kinase. Anderson, A.E., Adams, J.P., Qian, Y., Cook, R.G., Pfaffinger, P.J., Sweatt, J.D. J. Biol. Chem. (2000) [Pubmed]
  10. Inhibition of cyclic AMP-dependent protein kinase by analogues of a synthetic peptide substrate. Feramisco, J.R., Krebs, E.G. J. Biol. Chem. (1978) [Pubmed]
  11. Activation of multiple protein kinases during the burst in protein phosphorylation that precedes the first meiotic cell division in Xenopus oocytes. Cicirelli, M.F., Pelech, S.L., Krebs, E.G. J. Biol. Chem. (1988) [Pubmed]
  12. ATPase-promoting dead end inhibitors of the cAMP-dependent protein kinase. Mendelow, M., Prorok, M., Salerno, A., Lawrence, D.S. J. Biol. Chem. (1993) [Pubmed]
  13. In vivo phosphorylation of a synthetic peptide substrate of cyclic AMP-dependent protein kinase. Maller, J.L., Kemp, B.E., Krebs, E.G. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  14. Purification of a novel insulin-stimulated protein kinase from rat liver. Klarlund, J.K., Bradford, A.P., Milla, M.G., Czech, M.P. J. Biol. Chem. (1990) [Pubmed]
  15. Subunit interactions control protein phosphatase 2A. Effects of limited proteolysis, N-ethylmaleimide, and heparin on the interaction of the B subunit. Kamibayashi, C., Estes, R., Slaughter, C., Mumby, M.C. J. Biol. Chem. (1991) [Pubmed]
  16. Insulin stimulates a novel Mn2+-dependent cytosolic serine kinase in rat adipocytes. Yu, K.T., Khalaf, N., Czech, M.P. J. Biol. Chem. (1987) [Pubmed]
  17. PrKX is a novel catalytic subunit of the cAMP-dependent protein kinase regulated by the regulatory subunit type I. Zimmermann, B., Chiorini, J.A., Ma, Y., Kotin, R.M., Herberg, F.W. J. Biol. Chem. (1999) [Pubmed]
  18. Phosphorylation of acyl and dansyl derivatives of the peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly by the cAMP-dependent protein kinase. Kemp, B.E. J. Biol. Chem. (1980) [Pubmed]
  19. Evidence for cAMP-dependent platelet ectoprotein kinase activity that phosphorylates platelet glycoprotein IV (CD36). Hatmi, M., Gavaret, J.M., Elalamy, I., Vargaftig, B.B., Jacquemin, C. J. Biol. Chem. (1996) [Pubmed]
  20. Phosphatidylinositol 3-kinase-dependent activation of protein kinase C-zeta in bacterial lipopolysaccharide-treated human monocytes. Herrera-Velit, P., Knutson, K.L., Reiner, N.E. J. Biol. Chem. (1997) [Pubmed]
  21. Microarray-based kinase inhibition assay by gold nanoparticle probes. Sun, L., Liu, D., Wang, Z. Anal. Chem. (2007) [Pubmed]
  22. Identification of electrostatic interactions that determine the phosphorylation site specificity of the cAMP-dependent protein kinase. Gibbs, C.S., Zoller, M.J. Biochemistry (1991) [Pubmed]
  23. Substrate specificities for yeast and mammalian cAMP-dependent protein kinases are similar but not identical. Denis, C.L., Kemp, B.E., Zoller, M.J. J. Biol. Chem. (1991) [Pubmed]
  24. The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Crauwels, M., Donaton, M.C., Pernambuco, M.B., Winderickx, J., de Winde, J.H., Thevelein, J.M. Microbiology (Reading, Engl.) (1997) [Pubmed]
  25. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Sonneborn, A., Bockmühl, D.P., Gerads, M., Kurpanek, K., Sanglard, D., Ernst, J.F. Mol. Microbiol. (2000) [Pubmed]
  26. Characterization of insulin-stimulated protein serine/threonine kinases in CHO cells expressing human insulin receptors with point and deletion mutations. Dickens, M., Chin, J.E., Roth, R.A., Ellis, L., Denton, R.M., Tavaré, J.M. Biochem. J. (1992) [Pubmed]
  27. Relationship of phosphorylation and ADP-ribosylation using a synthetic peptide as a model substrate. Kharadia, S.V., Graves, D.J. J. Biol. Chem. (1987) [Pubmed]
  28. The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. Davare, M.A., Dong, F., Rubin, C.S., Hell, J.W. J. Biol. Chem. (1999) [Pubmed]
  29. Isolation and elucidation of some functional properties of the "mute" catalytic subunit of cAMP-dependent protein kinase. Reed, J., Gagelmann, M., Kinzel, V. Arch. Biochem. Biophys. (1983) [Pubmed]
  30. Real-Time Analysis of Enzyme Kinetics via Micro Parallel Liquid Chromatography. Wu, J., Barbero, R., Vajjhala, S., O'connor, S.D. Assay and drug development technologies (2006) [Pubmed]
  31. Monitoring protein kinase and phosphatase reactions with matrix-assisted laser desorption/ionization mass spectrometry and capillary zone electrophoresis: comparison of the detection efficiency of peptide-phosphopeptide mixtures. Craig, A.G., Hoeger, C.A., Miller, C.L., Goedken, T., Rivier, J.E., Fischer, W.H. Biol. Mass Spectrom. (1994) [Pubmed]
 
WikiGenes - Universities