The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase.

Phage T7 RNA polymerase has been used extensively in Escherichia coli for high-level expression of selected genes placed under the control of the phage T7 gene 10 promoter. We have constructed an analogous system for use in plastids of higher plants. A T7 RNA polymerase chimeric gene containing a cauliflower mosaic virus 35S promoter and a tobacco ribulose-bisphosphate carboxylase/oxygenase small-subunit chloroplast transit-peptide sequence was introduced into tobacco by nuclear transformation. Stable plastid transformation of tobacco expressing the T7 RNA polymerase activity with a T7 promoter/beta-glucuronidase (GUS) reporter gene construct resulted in expression of GUS mRNA and enzyme activity in all tissues examined. Expression of GUS activity was extremely high in mature leaves, moderate in young leaves and petals, and low in stems, roots, and developing seeds. Plastid transformation of wild-type tobacco with the same chimeric GUS gene resulted in undetectable levels of GUS mRNA and enzyme activity. Genetic crosses demonstrated that a silent T7/GUS reporter gene could be activated in the F1 generation by transmission of an active nuclear T7 RNA polymerase gene from the male parent.[1]

References

  1. Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase. McBride, K.E., Schaaf, D.J., Daley, M., Stalker, D.M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
 
WikiGenes - Universities