The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A role for autophosphorylation revealed by activated alleles of FUS3, the yeast MAP kinase homolog.

We have isolated dominant gain-of-function (gf) mutations in FUS3, a Saccharomyces cerevisiae mitogen-activated protein (MAP) kinase homolog, that constitutively activate the yeast mating signal transduction pathway and confer hypersensitivity to mating pheromone. Surprisingly, the phenotypes of dominant FUS3gf mutations require the two protein kinases, STE7 and STE11. FUS3gf kinases are hyperphosphorylated in yeast independently of STE7. Consistent with this, FUS3gf kinases expressed in Escherichia coli exhibit an increased ability to autophosphorylate on tyrosine in vivo. FUS3gf mutations suppress the signal transduction defect of a severely catalytically impaired allele of STE7. This finding suggests that the tyrosine-phosphorylated form of FUS3 is a better substrate for activation by STE7. Furthermore, these results imply that the degree of autophosphorylation of a MAP kinase determines its threshold of sensitivity to upstream signals.[1]


WikiGenes - Universities