The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Binding of the 2',5'-ADP subsite stimulates cyclohydrolase activity of human NADP(+)-dependent methylenetetrahydrofolate dehydrogenase/cyclohydrolase.

The bifunctional dehydrogenase/cyclohydrolase domain of the human trifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase catalyzes two sequential reactions with significant channeling of the intermediate, methenyltetrahydrofolate. Equilibrium dialysis established that a single, high-affinity NADP+ binding site exists per monomer of the dimeric enzyme. Kinetic characterization of NADP+ binding to the dehydrogenase using analogs as inhibitors demonstrated that affinity for this substrate is due almost exclusively to binding at the 2',5'-ADP subsite. The same structural specificities for binding are exhibited by these analogs in their effects on the cyclohydrolase. Both NADP+ and its 3-aminopyridine analog AADP partially inhibit the activity of the cyclohydrolase when assayed with added methenyltetrahydrofolate as substrate. However, under the same conditions, the cyclohydrolase is actually activated by 2',5'-ADP; activation requires the presence of the 5'-phosphate since 2'-AMP binds but does not activate. Nicotinamide ribose monophosphate (NMN) has no detectable effect either alone or in combination with 2',5'-ADP. The results are consistent with the existence of a shared dehydrogenase/cyclohydrolase active site proximal to the 2',5'-ADP subsite. NADP+ reduces the rate of the fully activated cyclohydrolase by 2-fold. Inhibition appears to be due to the loosely bound nicotinamide ring interacting with the common folate subsite, resulting in only partial inhibition by NADP+. The interaction of 2',5'-ADP with the cyclohydrolase suggests a potential role for this portion of the molecule in promoting the efficiency of the channeling of endogenously generated methenyltetrahydrofolate.[1]


WikiGenes - Universities