The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Subunit 6 of the Fo-ATP synthase complex from cytoplasmic male-sterile radish: RNA editing and NH2-terminal protein sequencing.

RNA editing and NH2-terminal processing of subunit 6 (atp6) of the mitochondrial Fo-ATPase complex has been investigated for the normal (fertile) and Ogura (male-sterile) radish cytoplasms to determine if previously identified differences between the Ogura atp6 locus and its normal radish counterpart are associated with cytoplasmic male sterility. Analysis of cDNA clones from five different sterile and fertile radish lines identified one C-to-U transition, which results in the replacement of a proline with a serine, in several of the lines. No editing of atp6 transcripts was observed in two lines, Scarlet Knight (normal radish) and sterile CrGC15 (Ogura radish). This is the first example of a naturally occurring plant mitochondrial gene that is not edited. The Ogura atp6 polypeptide is synthesized with a predicted NH2-terminal extension of 174 amino acids in contrast to the nine amino acid extension found in normal radish. In spite of the lack of similarity between the two extensions, NH2-terminal sequence analysis indicates that both polypeptides are processed to yield identical core proteins with a serine as the NH2-terminal residue. These results indicate that ATPase subunit 6 is synthesized normally in Ogura radish, and that it is unlikely that the atp6 locus is associated with Ogura cytoplasmic male sterility.[1]

References

 
WikiGenes - Universities