The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Metal-catalyzed oxidation of Fe2+ dehydrogenases. Consensus target sequence between propanediol oxidoreductase of Escherichia coli and alcohol dehydrogenase II of Zymomonas mobilis.

We have studied two enzymes of a newly described family of dehydrogenases with high sequence homology, 1,2-propanediol oxidoreductase of Escherichia coli and alcohol dehydrogenase II of Zymomonas mobilis. These enzymes perform their metabolic role under anaerobic conditions; in the presence of oxygen, they show a very similar inactivation pattern by a metal-catalyzed oxidation system. Titration of histidine residues with diethyl pyrocarbonate showed one histidine residue less in the oxidized enzymes. Comparison of subtilisin peptide maps of active and inactivated enzymes showed a difference in one histidine-containing peptide, the sequence of which is YNTPH277GVAN for propanediol oxidoreductase and YNLPH277GV for alcohol dehydrogenase II. This histidine residue lies 10 residues away from a proposed metal-binding site, H263XXXH267, necessary to explain a site-specific free radical mechanism. The three histidine residues here described are strictly conserved in all enzymes of this family. In this report we propose that histidine 277 is a target for oxidation by a metal-catalyzed oxidation system and that this modification leads to the irreversible inactivation of both enzymes.[1]

References

 
WikiGenes - Universities