The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Aldose reductase-catalyzed reduction of acrolein: implications in cyclophosphamide toxicity.

Acrolein, a highly cytotoxic aldehyde, is a metabolic by-product of the antineoplastic agent cyclophosphamide and is responsible for the development of hemorrhagic cystitis, a serious side effect of cyclophosphamide therapy. Aldose reductase (EC 1.1.1.21), a member of the aldo-keto reductase superfamily, catalyzes the NADPH-dependent reduction of acrolein to allyl alcohol (Km = 80 microM, kcat = 87 min-1). Aldose reductase is expressed at different levels in individuals. This suggests that individual differences in the reductive metabolism of acrolein may be a determinant of acrolein toxicity. In addition to being a substrate, acrolein also produces a time-dependent 7-20-fold increase in the activity of aldose reductase toward a variety of substrates. This involves initial binding of acrolein to a second site (Ks = 58 microM). Acrolein activation of aldose reductase results not only in higher kcat values for all substrates but also in higher Km values and decreased catalytic efficiencies. Acrolein activation of aldose reductase reduces its affinity for aldose reductase inhibitors.[1]

References

  1. Aldose reductase-catalyzed reduction of acrolein: implications in cyclophosphamide toxicity. Kolb, N.S., Hunsaker, L.A., Vander Jagt, D.L. Mol. Pharmacol. (1994) [Pubmed]
 
WikiGenes - Universities