Probing the active site of cytoplasmic aldehyde dehydrogenase with a chromophoric reporter group.
3,4-Dihydro-3-methyl-6-nitro-2H-1,3-benzoxazin-2-one ('DMNB') reacts with cytoplasmic aldehyde dehydrogenase in a similar way to that previously observed with the structurally related p-nitrophenyl dimethylcarbamate, but provides a covalently linked p-nitrophenol-containing reporter group at the enzyme's active site. The pKa of the enzyme-linked reporter group is much higher than that of free p-nitrophenol, which is consistent with its being in a very hydrophobic environment, or possibly one containing negative charge. Upon binding of NAD+ to the modified enzyme, the pKa falls dramatically, by about 4 1/2 pH units. This implies that under these conditions there is a positive charge near the p-nitrophenoxide moiety, perhaps that of the nicotinamide ring of NAD+. The modified enzyme binds NAD+ very tightly; neither gel filtration nor dialysis is effective in separating them. However, the reporter group provides a convenient way of monitoring the displacement of this bound NAD+ when NADH is added.[1]References
- Probing the active site of cytoplasmic aldehyde dehydrogenase with a chromophoric reporter group. Kitson, T.M., Kitson, K.E. Biochem. J. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg