The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mechanisms of endothelin-1-induced pulmonary vasodilatation in neonatal pigs.

1. We determined the contributions of three independent vasodilator mechanisms (cyclo-oxygenase metabolites, nitric oxide and ATP-sensitive potassium channels) in the mediation of pulmonary vasomotor effects of endothelin-1 (ET-1) in neonatal pigs. 2. Lungs of piglets (2.7 +/- 0.3 days old) were perfused at constant flow (60 ml min-1) with recirculating Ringer-albumin solution. We measured pulmonary artery pressure (Ppa) and the distribution of pulmonary vascular resistance using the double-occlusion method. 3. ET-1 (10(-12)-10(-9) M) produced concentration-dependent pulmonary vasodilatation. ET-1 (10(-9) M) decreased Ppa from 24.5 +/- 3.1 to 17.0 +/- 3.0 cmH2O with a nadir occurring at 1 min, followed by a slow return to baseline over 60 min (time for half-recovery (t1/2R) of 17.2 min). The decrease in Ppa was the result of pulmonary precapillary vasodilatation. Endothelin-3 (ET-3) (10(-12) and 10(-11) M) also induced vasodilatation comparable to equimolar concentrations of ET-1, whereas the selective ETB receptor agonist IRL 1620 at equimolar concentrations caused a more protracted vasodilatation response. 4. Neither the cyclo-oxygenase inhibitor indomethacin (10(-5) M) nor the KATP+ (ATP-sensitive) potassium channel blocker glibenclamide (10(-5) M) significantly altered the baseline Ppa; moreover, neither inhibitor affected the ET-1-induced vasodilatation, indicating the lack of involvement of cyclo-oxygenase metabolites and KATP+ channel activity in the mediation of the pulmonary vasodilator response to ET-1. 5. Addition of 10(-5) M reduced haemoglobin, which antagonizes the action of nitric oxide (NO), increased Ppa over prehaemoglobin levels. Haemoglobin significantly decreased the duration (t1/2R, 3.8 +/- 0.7 min) of pulmonary vasodilatation to ET-1, but did not abolish the initial phase of the response. L-N-Monomethylarginine, an inhibitor of NO synthesis, either alone or in combination with haemoglobin, similarly reduced the duration of ET-1-induced pulmonary vasodilatation. 6. The ETA receptor antagonist [Dpr1-Asp15]-ET-1 (Dpr, diaminoproprionic acid) had no effect on pulmonary vasodilatation induced by ET-1, ET-3 or IRL 1620 (suc-(Glu9,Ala11,15)-ET-1(8-21)). This finding combined with the observed relative potencies of the peptides (IRL 1620 > ET-1 = ET-3) suggests that pulmonary vasodilatation was mediated by activation of the non-selective ETB receptor. 7. The results indicate that the sustained ET-1-induced pulmonary vasodilatation in neonates is probably mediated via ETB receptor activation and that it is critically dependent on NO.[1]

References

  1. Mechanisms of endothelin-1-induced pulmonary vasodilatation in neonatal pigs. Pinheiro, J.M., Malik, A.B. J. Physiol. (Lond.) (1993) [Pubmed]
 
WikiGenes - Universities