The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Diabeta     5-chloro-N-[2-[4- (cyclohexylcarbamoylsulfa...

Synonyms: Maninil, Micronase, glyburide, Daonil, Neogluconin, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Maninil

 

Psychiatry related information on Maninil

 

High impact information on Maninil

  • The women were randomly assigned between 11 and 33 weeks of gestation to receive glyburide or insulin according to an intensified treatment protocol [2].
  • Hypoxic vasodilation in isolated, perfused guinea pig hearts can be prevented by glibenclamide, a blocker of adenosine triphosphate (ATP)-sensitive potassium channels, and can be mimicked by cromakalim, which opens ATP-sensitive potassium channels [11].
  • Hypoglycemia from glipizide and glyburide [12].
  • Concomitant with this change, basal C-peptide and free insulin values increased with glyburide therapy, but this pharmacological agent did not alter the ability of the patient's erythrocytes to bind insulin [13].
  • We report here that both ATP and glibenclamide sensitivities of the 30 pS K channel in TAL cells were absent in mice lacking CFTR and in mice homozygous for the deltaF508 mutation [14].
 

Chemical compound and disease context of Maninil

 

Biological context of Maninil

  • When the process of insulin-induced receptor loss (or down regulation) was studied in the presence of glyburide, the drug exerted a marked inhibitory effect on this regulatory process [20].
  • Measurements of cAMP, cytosolic pH, and Ca2+ in isolated bile duct cells suggest that glybenclamide directly activates Na+-K+-2Cl- cotransport, rather than other transporters or conventional second-messenger systems that link to secretory pathways in these cells [4].
  • RESULTS: In cirrhotic rats, glibenclamide (5, 20, 30 mg/kg but not 2.5 mg/kg) significantly increased vascular resistance in portal and systemic territories [21].
  • Glyburide therapy resulted in significant reduction in fasting serum glucose levels; in PMNLs, this treatment resulted in a significant reduction in [Ca2+]i levels, a significant increase in ATP content, and a significant improvement of phagocytosis [22].
  • However, glibenclamide did not impair the increases of coronary blood flow, myocardial oxygen consumption, and systolic wall thickening that occurred during exercise [23].
 

Anatomical context of Maninil

 

Associations of Maninil with other chemical compounds

 

Gene context of Maninil

  • Here, we show that beta(2) is the major adrenergic receptor isoform expressed in airway epithelia and that it colocalizes with CFTR at the apical membrane. beta(2)AR stimulation increases CFTR activity, in airway epithelial cells, that is glybenclamide sensitive [30].
  • The putative ABCA1 inhibitor glyburide and antisense oligonucleotides directed against ABCA1 mRNA significantly reduced apoE secretion from THP1 macrophages and HMDM [31].
  • 1) In PANC-1 cells, cAMP causes parallel activation of Cl- channels and of HCO3- extrusion by DIDS-sensitive and Na+-independent Cl-/HCO3- exchange, both effects being inhibited by Cl- channel blockers NPPB and glibenclamide [32].
  • SUR1, the typical pancreatic SUR isoform, shows much higher affinity for glibenclamide but considerably lower affinity for most openers than SUR2 [33].
  • Moreover, HL activity was significantly lower after insulin than after glibenclamide (HL 247.2 +/- 22.3 vs. 263.5 +/- 22.6 mU/ml, P < 0.05) [34].
 

Analytical, diagnostic and therapeutic context of Maninil

References

  1. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. DeFronzo, R.A., Goodman, A.M. N. Engl. J. Med. (1995) [Pubmed]
  2. A comparison of glyburide and insulin in women with gestational diabetes mellitus. Langer, O., Conway, D.L., Berkus, M.D., Xenakis, E.M., Gonzales, O. N. Engl. J. Med. (2000) [Pubmed]
  3. ATP-dependent K+ channels modulate vasoconstrictor responses to severe hypoxia in isolated ferret lungs. Wiener, C.M., Dunn, A., Sylvester, J.T. J. Clin. Invest. (1991) [Pubmed]
  4. Stimulation of bile duct epithelial secretion by glybenclamide in normal and cholestatic rat liver. Nathanson, M.H., Burgstahler, A.D., Mennone, A., Dranoff, J.A., Rios-Velez, L. J. Clin. Invest. (1998) [Pubmed]
  5. Glibenclamide stimulates fluid secretion in rodent cholangiocytes through a cystic fibrosis transmembrane conductance regulator-independent mechanism. Spirlì, C., Fiorotto, R., Song, L., Santos-Sacchi, J., Okolicsanyi, L., Masier, S., Rocchi, L., Vairetti, M.P., De Bernard, M., Melero, S., Pozzan, T., Strazzabosco, M. Gastroenterology (2005) [Pubmed]
  6. The effects of KATP channel modulators on counterregulatory responses and cognitive function during acute controlled hypoglycaemia in healthy men: a pilot study. Bingham, E., Hopkins, D., Pernet, A., Reid, H., Macdonald, I.A., Amiel, S.A. Diabet. Med. (2003) [Pubmed]
  7. Influence of potassium channel modulators on morphine state-dependent memory of passive avoidance. Zarrindast, M.R., Jafari, M.R., Shafaghi, B., Djahanguiri, B. Behavioural pharmacology. (2004) [Pubmed]
  8. Glibenclamide steady state plasma levels during concomitant vinpocetine administration in type II diabetic patients. Grandt, R., Braun, W., Schulz, H.U., Lührmann, B., Frercks, H.J. Arzneimittel-Forschung. (1989) [Pubmed]
  9. The DIACOM study (effect of DosIng frequency of oral Antidiabetic agents on the COMpliance and biochemical control of type 2 diabetes). Kardas, P. Diabetes, obesity & metabolism. (2005) [Pubmed]
  10. Hypoglycemia associated with high doses of sertraline and sulphonylurea compound in a noninsulin-dependent diabetes mellitus patient. Takhar, J., Williamson, P. The Canadian journal of clinical pharmacology = Journal canadien de pharmacologie clinique. (1999) [Pubmed]
  11. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Daut, J., Maier-Rudolph, W., von Beckerath, N., Mehrke, G., Günther, K., Goedel-Meinen, L. Science (1990) [Pubmed]
  12. Hypoglycemia from glipizide and glyburide. Gambassi, G., Carbonin, P., Bernabei, R. JAMA (1998) [Pubmed]
  13. Addition of sulfonylurea to insulin treatment in poorly controlled type II diabetes. A double-blind, randomized clinical trial. Schade, D.S., Mitchell, W.J., Griego, G. JAMA (1987) [Pubmed]
  14. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. Lu, M., Leng, Q., Egan, M.E., Caplan, M.J., Boulpaep, E.L., Giebisch, G.H., Hebert, S.C. J. Clin. Invest. (2006) [Pubmed]
  15. Hypoglycemia from glipizide and glyburide. Shorr, R.I. JAMA (1998) [Pubmed]
  16. Glyburide or insulin for metabolic control in non-insulin-dependent diabetes mellitus. A randomized, double-blind study. Nathan, D.M., Roussell, A., Godine, J.E. Ann. Intern. Med. (1988) [Pubmed]
  17. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. McNicholas, C.M., Guggino, W.B., Schwiebert, E.M., Hebert, S.C., Giebisch, G., Egan, M.E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  18. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Cole, W.C., McPherson, C.D., Sontag, D. Circ. Res. (1991) [Pubmed]
  19. Role of the sulfonylurea receptor in regulating human adipocyte metabolism. Shi, H., Moustaid-Moussa, N., Wilkison, W.O., Zemel, M.B. FASEB J. (1999) [Pubmed]
  20. Direct in vitro effect of a sulfonylurea to increase human fibroblast insulin receptors. Prince, M.J., Olefsky, J.M. J. Clin. Invest. (1980) [Pubmed]
  21. Altered control of vascular tone by adenosine triphosphate-sensitive potassium channels in rats with cirrhosis. Moreau, R., Komeichi, H., Kirstetter, P., Ohsuga, M., Cailmail, S., Lebrec, D. Gastroenterology (1994) [Pubmed]
  22. Polymorphonuclear leukocytes in non-insulin-dependent diabetes mellitus: abnormalities in metabolism and function. Alexiewicz, J.M., Kumar, D., Smogorzewski, M., Klin, M., Massry, S.G. Ann. Intern. Med. (1995) [Pubmed]
  23. Role of K+ATP channels in coronary vasodilation during exercise. Duncker, D.J., Van Zon, N.S., Altman, J.D., Pavek, T.J., Bache, R.J. Circulation (1993) [Pubmed]
  24. Stimulation of insulin secretion reveals heterogeneity of pancreatic B cells in vivo. Stefan, Y., Meda, P., Neufeld, M., Orci, L. J. Clin. Invest. (1987) [Pubmed]
  25. Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. Draznin, B., Sussman, K.E., Eckel, R.H., Kao, M., Yost, T., Sherman, N.A. J. Clin. Invest. (1988) [Pubmed]
  26. Increase of gap junctions between pancreatic B-cells during stimulation of insulin secretion. Meda, P., Perrelet, A., Orci, L. J. Cell Biol. (1979) [Pubmed]
  27. Calcitonin gene-related peptide affords gastric mucosal protection by activating potassium channel in Wistar rat. Doi, K., Nagao, T., Kawakubo, K., Ibayashi, S., Aoyagi, K., Yano, Y., Yamamoto, C., Kanamoto, K., Iida, M., Sadoshima, S., Fujishima, M. Gastroenterology (1998) [Pubmed]
  28. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Stieger, B., Fattinger, K., Madon, J., Kullak-Ublick, G.A., Meier, P.J. Gastroenterology (2000) [Pubmed]
  29. Characterization, purification, and affinity labeling of the brain [3H]glibenclamide-binding protein, a putative neuronal ATP-regulated K+ channel. Bernardi, H., Fosset, M., Lazdunski, M. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  30. A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Naren, A.P., Cobb, B., Li, C., Roy, K., Nelson, D., Heda, G.D., Liao, J., Kirk, K.L., Sorscher, E.J., Hanrahan, J., Clancy, J.P. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  31. ATP binding cassette transporter ABCA1 modulates the secretion of apolipoprotein E from human monocyte-derived macrophages. Von Eckardstein, A., Langer, C., Engel, T., Schaukal, I., Cignarella, A., Reinhardt, J., Lorkowski, S., Li, Z., Zhou, X., Cullen, P., Assmann, G. FASEB J. (2001) [Pubmed]
  32. Ca2+-activated Cl- channels can substitute for CFTR in stimulation of pancreatic duct bicarbonate secretion. Zsembery, A., Strazzabosco, M., Graf, J. FASEB J. (2000) [Pubmed]
  33. Effect of two amino acids in TM17 of Sulfonylurea receptor SUR1 on the binding of ATP-sensitive K+ channel modulators. Hambrock, A., Kayar, T., Stumpp, D., Osswald, H. Diabetes (2004) [Pubmed]
  34. Insulin and sulfonylurea therapy in NIDDM patients. Are the effects on lipoprotein metabolism different even with similar blood glucose control? Romano, G., Patti, L., Innelli, F., Di Marino, L., Annuzzi, G., Iavicoli, M., Coronel, G.A., Riccardi, G., Rivellese, A.A. Diabetes (1997) [Pubmed]
  35. Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney. Yao, X., Chang, A.Y., Boulpaep, E.L., Segal, A.S., Desir, G.V. J. Clin. Invest. (1996) [Pubmed]
  36. Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Shigematsu, S., Sato, T., Abe, T., Saikawa, T., Sakata, T., Arita, M. Circulation (1995) [Pubmed]
  37. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Tomai, F., Crea, F., Gaspardone, A., Versaci, F., De Paulis, R., Penta de Peppo, A., Chiariello, L., Gioffrè, P.A. Circulation (1994) [Pubmed]
 
WikiGenes - Universities