A rapid capsaicin-activated current in rat trigeminal ganglion neurons.
A subpopulation of pain fibers are activated by capsaicin, the ingredient in red peppers that produces a burning sensation when eaten or placed on skin. Previous studies on dorsal root ganglion neurons indicated that capsaicin activates sensory nerves via a single slowly activating and inactivating inward current. In rat trigeminal neurons, we identified a second capsaicin-activated inward current. This current can be distinguished from the slow one in that it rapidly activates and inactivates, requires Ca2+ for activation, and is insensitive to the potent capsaicin agonist resiniferatoxin. The rapid current, like the slower one, is inhibited by ruthenium red and capsazepine. The two capsaicin-activated inward currents share many similarities with the two inward currents activated by lowering the pH to 6. 0. These similarities include kinetics, reversal potentials, responses to Ca2+, and inhibition by ruthenium red and capsazepine. These results suggest that acidic stimuli may be an endogenous activator of capsaicin-gated currents and therefore may rationalize why pain is produced when the plasma acidity is increased, as occurs during ischemia and inflammation.[1]References
- A rapid capsaicin-activated current in rat trigeminal ganglion neurons. Liu, L., Simon, S.A. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg