Retinoic acid stimulates the synthesis of a novel heat shock protein in the regenerating forelimb of the newt.
Morphogenetic effects of retinoic acid (RA) on the urodele amphibian limb regenerate pattern have been well documented, but little is known regarding the mechanism of this action of RA at the molecular level. Since exogenous RA, at concentrations sufficient to cause proximalization, represents a significant stress to newts and has been shown previously to elicit increased synthesis of heat shock proteins (HSPs) in mouse embryo limb buds, we investigated the effects of this putative morphogen on the synthesis of members of the 70-kilodalton (70-kDa) stress protein family in amputated forelimbs of the newt Notophthalmus viridescens. Injection (i.p.) of RA in dimethyl sulfoxide (DMSO), at a dose sufficient to cause significant proximal-distal reduplication of the pattern in 50% of animals treated, resulted in increased synthesis and accumulation of a 73-kDa protein with a pI of approximately 6.75. The synthesis of this same protein is increased in limb tissues as a result of a brief 35 degrees C heat shock. This protein is electrophoretically distinct from the newt HSP 70 family members, displays a different partial peptide map, and shows no immunological cross-reactivity with an anti-human HSP 70 monoclonal antibody. It may be a member of a separate family of 70- to 73-kDa HSPs. Interestingly, the synthesis of this protein is increased and it is more abundant in control, proximal moderate-early bud stage regenerates at 6 days after i.p. injection of DMSO than in similarly treated distal regenerates. This protein is, in addition, increased in distal regenerates to proximal levels by a prior injection of RA.(ABSTRACT TRUNCATED AT 250 WORDS)[1]References
- Retinoic acid stimulates the synthesis of a novel heat shock protein in the regenerating forelimb of the newt. Carlone, R.L., Boulianne, R.P., Vijh, K., Karn, H., Fraser, G.A. Biochem. Cell Biol. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg