The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Transport of 5-aminolevulinic acid by the dipeptide permease in Salmonella typhimurium.

In a previous search for mutants of Salmonella typhimurium that are defective in heme synthesis, one class that is apparently defective in 5-aminolevulinic acid (ALA) uptake (alu) was found. Here, I describe the characterization of these mutations. The mutations all map to a single locus near 77.5 min on the genetic map, which is transcribed counterclockwise. Nutritional tests, genetic and physical mapping, and partial DNA sequence analysis revealed that alu mutants are defective in a periplasmic binding protein-dependent permease that also transports dipeptides, encoded by the dpp operon. The uptake of labeled ALA is defective in dpp mutants and is markedly increased in a strain that has elevated transcription of the dpp locus. Unlabeled L-leucyl-glycine competes with labeled ALA for uptake. In a strain carrying both a dpp-lac operon fusion and a functional copy of the dpp locus, the expression of beta-galactosidase is not induced by ALA, nor, in a hemL mutant, does expression of dpp change substantially during starvation for ALA. The dipeptide permease displays a relaxed substrate specificity that allows transport of the important nonpeptide nutrient ALA, whose structure is closely related to that of glycyl-glycine.[1]


WikiGenes - Universities