The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ionic mechanism of minoxidil sulfate-induced shortening of action potential durations in guinea pig ventricular myocytes.

Patch-clamp techniques were used to study pharmacological effects of minoxidil sulfate (MNXS) on the membrane currents of enzymatically isolated guinea pig ventricular myocytes. In the whole-cell current-clamp mode, MNXS (100 microM) shortened the action potential duration without affecting the resting membrane potential. This action was antagonized in part by 1 microM glibenclamide, a specific blocker of ATP-sensitive K+ channel. Under the whole-cell voltage-clamp condition, MNXS increased the time-independent outward current, in a dose-dependent manner, at voltages more positive to -73.5 mV. This MNXS-induced outward current was inhibited completely by 1 microM glibenclamide. In inside-out patch membranes, MNXS (100 microM) applied to the cytosolic side produced a reversible activation of ATP-sensitive K+ channels. This MNXS-dependent increase in the single-channel activity was abolished by increasing the ATP concentration to 3 mM or by adding 1 microM glibenclamide. Even after complete rundown of the channel activity in inside-out patches, MNXS could reactivate in part the channel in 22 of 35 patches. In addition, MNXS was found to suppress whole-cell L-type Ca++ channel currents in a dose-dependent manner. This MNXS effect on Ca++ currents was not antagonized by 1-3 microM glibenclamide. We conclude that MNXS shortens the cardiac action potential duration by both increasing ATP-sensitive K+ channel currents and decreasing L-type Ca++ channel currents.[1]

References

 
WikiGenes - Universities