The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The fate of Borrelia burgdorferi, the agent for Lyme disease, in mouse macrophages. Destruction, survival, recovery.

The macrophage is a known reservoir for a number of infectious agents, and is therefore a likely candidate site for persistence of Borrelia burgdorferi, the Lyme spirochete. We report that unopsonized B. burgdorferi enter macrophages rapidly, resulting mainly in degradation but occasionally in apparent intracellular persistence. We studied uptake of spirochetes by macrophages by simultaneously labeling infected cells with antibodies to B. burgdorferi and with sequential components of the endocytic pathway, and we examined optical sections (0.5-1.0 micron in thickness) of these cells by confocal fluorescence microscopy at multiple time points after infection. We found that only 5 min of incubation at 37 degrees C were required for nearly 100% of B. burgdorferi to enter a lysosomal glycoprotein-positive compartment, whereas 60 min were required for 90% of the spirochetes to appear in a cathepsin L-positive compartment under the same conditions. We also labeled infected living cells with acridine orange to distinguish live from killed intracellular organisms. Although the large majority of spirochetes within a given cell were dead, we saw occasional live ones up to 24 h (the longest interval examined) after all extracellular organisms had been lysed in distilled water. Moreover, we can reculture spirochetes from macrophages after infection. Persistence of spirochetes within macrophages provides a possible pathogenetic mechanism for chronic or recurrent Lyme disease in man.[1]

References

 
WikiGenes - Universities