The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene.

Loss of histotypic organization of epithelial cells is a common feature in normal development as well as in the invasion of carcinomas. Here we show that the v-src oncogene is a potent effector of epithelial differentiation and invasiveness. MDCK epithelial cells transformed with a temperature-sensitive mutant of v-src exhibit a strictly epithelial phenotype at the nonpermissive temperature for pp60v-src activity (40.5 degrees C) but rapidly loose cell-to-cell contacts and acquire a fibroblast-like morphology after culture at the permissive temperature (35 degrees C). Furthermore, the invasiveness of the cells into collagen gels or into chick heart fragments was increased at the permissive temperature. The profound effects of v-src on intercellular adhesion were not linked to changes in the levels of expression of the epithelial cell adhesion molecule E-cadherin. Rather, we observed an increase in tyrosine phosphorylation of E-cadherin and, in particular, of the associated protein beta-catenin. These results suggest a mechanism by which v-src counteracts junctional assembly and thereby promotes invasiveness and dedifferentiation of epithelial cells through phosphorylation of the E-cadherin/catenin complex.[1]


WikiGenes - Universities