The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Extracellular matrix produced by cultured corneal and aortic endothelial cells contains active tissue-type and urokinase-type plasminogen activators.

Incubation of plasminogen with the subendothelial extracellular matrix (ECM) synthesized by cultured bovine corneal and aortic endothelial cells resulted in generation of fibrinolytic activity, indicated by proteolysis of 125I-fibrin in a time- and dose-dependent manner. Both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) were identified in the ECM by fibrin zymography, immunoblotting, and inhibition of plasminogen activation by anti-u-PA and anti-t-PA antibodies. Most of the ECM-resident plasminogen activator (PA) activity did not originate from intracellular PA release occurring when the endothelial cells were lyzed and the ECM exposed, since a comparable amount of PA was associated with the ECM when the cells were lyzed with Triton X-100 or removed intact by treatment with 2 M urea. Active u-PA and t-PA were released from ECM by treatment with heparanase (endo-beta-D-glucuronidase), indicating that some of the ECM-resident PA activity is sequestered by heparan sulfate side chains. These results indicate that both u-PA and t-PA produced by endothelial cells are firmly sequestered in an active form by the subendothelial ECM. It is suggested that ECM-resident plasminogen activators participate in sequential matrix degradation during cell invasion and tumor metastasis. PA activity may also function in release of ECM-bound growth factors (i.e., basic fibroblast growth factor) and activation of proenzymes (i.e., prothrombin), resulting in modulation of the ECM growth-promoting and thrombogenic properties.[1]

References

 
WikiGenes - Universities