The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus.

Analysis of the 5' termini of Bunyamwera virus S segment mRNAs by cloning and sequence analysis revealed the presence of nonviral, heterogeneous sequences 12 to 17 bases long. This is similar to reports for other members of the family Bunyaviridae and is taken to indicate that mRNA transcription is primed by a "cap-snatching" mechanism. The 3' end of the Bunyamwera virus S mRNA was mapped, by using an RNase protection assay, to 100 to 110 nucleotides upstream of the 3' end of the template. Previously we reported expression of the Bunyamwera virus L (polymerase) protein by recombinant vaccinia virus and demonstrated that the recombinant L protein was functional in terms of RNA synthesis activity in a nucleocapsid transfection assay (H. Jin and R. M. Elliott, J. Virol. 65: 4182-4189, 1991). In the present study we further analyze the RNAs made by using this system and show that positive-sense RNAs contain 5' nonviral sequences. Hence the initiation of mRNA transcription by the recombinant L protein resembles that seen during authentic bunyavirus infection and suggests that the L protein has the endonuclease activity which generates the primers. Some of these positive-sense transcripts terminated at the mRNA termination site, but the majority read through to the end of the template. No primer sequences were found at the 5' terminal of negative-sense RNAs. The recombinant L protein was able to replicate negative-sense RNA supplied by transfected virion-derived nucleocapsids, and both positive- and negative-sense RNAs were synthesized. These results indicate that the recombinant L protein has both transcriptase and replicase activities.[1]


WikiGenes - Universities