The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Expression of the developmental I antigen by a cloned human cDNA encoding a member of a beta-1,6-N-acetylglucosaminyltransferase gene family.

The blood group i/I antigens were the first identified alloantigens that display a dramatic change during human development. The i and I antigens are determined by linear and branched poly-N-acetyllactosaminoglycans, respectively. In human erythrocytes during embryonic development, the fetal (i) antigen is replaced by the adult (I) antigen as a result of the appearance of a beta-1,6-N-acetylglucosaminyltransferase, the I-branching enzyme. Here, we report the cDNA cloning and expression of this branching enzyme that converts linear into branched poly-N-acetyllactosaminoglycans, thus introducing the I antigen in transfected cells. The cDNA sequence predicts a protein with type II membrane topology as has been found for all other mammalian glycosyltransferases cloned to date. The Chinese hamster ovary cells that stably express the isolated cDNA acquire I-branched structures as evidenced by the structural analysis of glycopeptides from these cells. Comparison of the amino acid sequence with those of other glycosyltransferases revealed that this I-branching enzyme and another beta-1,6-N-acetylglucosaminyltransferase that forms a branch in O-glycans are strongly homologous in the center of their putative catalytic domains. Moreover, the genes encoding these two beta-1,6-N-acetylglucosaminyltransferases were found to be located at the same locus on chromosome 9, band q21. These results indicate that the I-branching enzyme represents a member of a beta-1,6-N-acetylglucosaminyltransferase gene family of which expression is controlled by developmental programs.[1]

References

 
WikiGenes - Universities