The bovine mannose 6-phosphate/insulin-like growth factor II receptor. The role of arginine residues in mannose 6-phosphate binding.
The extracytoplasmic region of the bovine cation-independent mannose 6-phosphate/insulin-like growth factor II receptor ( M6P/IGF-II receptor) consists of 15 homologous repeating domains, each of which is approximately 147 residues in length. The receptor contains two high affinity mannose 6-phosphate (Man-6-P) binding sites and our recent studies (Westlund, B., Dahms, N. M., and Kornfeld, S. (1991) J. Biol. Chem. 266, 23233-23239) have localized these two binding sites to domains 1-3 and 7-11. To further define the location of the Man-6-P binding sites and to determine the role of specific arginine residues in Man-6-P binding, site-directed mutagenesis was utilized to create truncated soluble forms of the M6P/IGF-II receptor in conjunction with either conservative (Lys) or nonconservative (Ala) replacement of arginine residues. These mutants were expressed transiently in COS-1 cells and assayed for their ability to bind phosphomannosyl residues by affinity chromatography. Analysis of the ligand binding activity of carboxyl-terminal truncated forms of the receptor's extracytoplasmic region demonstrated that the second Man-6-P binding site is contained within domains 7-9. Substitution of Arg435 in domain 3 of the amino-terminal binding site and Arg1334 in domain 9 of the second binding site results in a dramatic loss of ligand binding activity. However, substitutions at positions 435 and/or 1334 did not affect the secretion, glycosylation, or immunoreactivity of these truncated proteins. Taken together, these results indicate that Arg435 and Arg1334 are essential components of the M6P/IGF-II receptor's high affinity Man-6-P binding sites.[1]References
- The bovine mannose 6-phosphate/insulin-like growth factor II receptor. The role of arginine residues in mannose 6-phosphate binding. Dahms, N.M., Rose, P.A., Molkentin, J.D., Zhang, Y., Brzycki, M.A. J. Biol. Chem. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg