The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structural aspects of inotropic bipyridine binding. Crystal structure determination to 1.9 A of the human serum transthyretin-milrinone complex.

The crystal structure of human transthyretin ( TTR) complexed with milrinone (2-methyl-5-cyano-3,4'-bipyridin-6(1H)-one), a positive inotropic cardiac agent, has been refined to R = 17.4% for 8-1.9-A resolution data. This report provides the first detailed description of protein interactions for an inotropic bipyridine agent which is an effective thyroid hormone binding competitor to transthyretin. Milrinone is bound along the 2-fold axis in the binding site with its substituted pyridone ring located deep within the channel of the two identical binding domains of the TTR tetramer. In this orientation the 5-cyano group occupies the same site as the 3'-iodine in the TTR complex with 3,3'-diiodothyronine (Wojtczak, A., Luft, J., and Cody, V. (1992) J. Biol. Chem. 267, 353-357), which is 3.5 A deeper in the channel than thyroxine (Blake, C. C. F., and Oately, S. J., (1977) Nature 268, 115-120). These structural results confirm computer modeling studies of milrinone structural homology with thyroxine and its TTR binding interactions and explain the effectiveness of milrinone competition for thyroxine binding to TTR. To understand the weaker binding affinity of the parent inotropic drug, amrinone (5-amino-3,4'-bipyridin-6(1H)-one), modeling studies of its TTR binding were carried out which indicate that the 5-amino group cannot participate in strong interactions with TTR and the lack of the 2-methyl further weakens amrinone binding.[1]


WikiGenes - Universities