The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators.

Mutants of Streptomyces griseus deficient in A-factor production are sporulation negative, since A-factor is an essential hormonal regulator for the induction of morphological and physiological differentiation in this bacterium. A DNA fragment which induced aerial mycelium formation and sporulation in an A-factor-deficient mutant strain, S. griseus HH1, was cloned from this mutant strain. Subcloning experiments and nucleotide sequencing showed that two open reading frames, ORF1 with 656 amino acids and ORF2 with 201 amino acids, were required in order to induce sporulation. The amino acid sequence of ORF1 significantly resembled that of the Escherichia coli HlyB protein, a member of a family of bacterial membrane proteins engaged in ATP-dependent secretion mechanisms. Conserved features of this surface translocator family, such as the transmembrane structure predicted by their hydropathy profiles and the amino acid sequence forming an ATP-binding fold, were also conserved in ORF1. The ORF1 gene appeared to constitute a transcriptional unit with an additional upstream gene encoding ORF3, which was greatly similar to ORF1 in size and amino acid sequence. The other protein, ORF2, showed significant end-to-end homology with the E. coli uhpA product, a regulatory protein for the uptake of sugar phosphates. Like UhpA as a response regulator of a bacterial two-component regulatory system, ORF2 contained a helix-turn-helix DNA-binding domain at its COOH-terminal portion and an Asp residue (Asp-54) probably to be phosphorylated at its NH2-terminal portion. An amino acid replacement from Asp-54 to Asn resulted in the loss of the ability of ORF2 to induce sporulation in strain HH1.[1]


WikiGenes - Universities