The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Bradyrhizobium japonicum rhizobitoxine genes and putative enzyme functions: expression requires a translational frameshift.

Some strains of Bradyrhizobium japonicum produce rhizobitoxine, a phytotoxin that causes foliar chlorosis on susceptible host plants. We have previously obtained Tn5-induced rhizobitoxine null mutants of B. japonicum. DNA sequence analysis of the region surrounding two Tn5 insertions identifies two overlapping open reading frames. The first open reading frame (rtxA) predicts a 54-kDa protein for which the N-terminal 280 residues have sequence similarity to serine: pyruvate aminotransferase. The sequence homology to aminotransferase is consistent with the involvement of this gene in serinol production, a likely intermediate in rhizobitoxine biosynthesis. Previously, a mutant in this open reading frame was shown not to make serinol. The predicted amino acid sequence of the second open reading frame (rtxB) has similarity to yeast O-acetylhomoserine sulfhydrolase. This enzyme function is similar to that required for dihydrorhizobitoxine synthase. The DNA sequence shows that the rtxB open reading frame overlaps rtxA, suggesting that expression of rtxB requires a -1 translational frameshift. Protein expression experiments demonstrate production of an RtxAB fusion protein. The ability of the overlapping rtxA and rtxB sequences to promote a translational frameshift was confirmed in a heterologous expression system. In Escherichia coli, this frameshift appears to be unusually efficient, occurring at a frequency of 80-90%.[1]


WikiGenes - Universities