The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Spermidine-induced destabilization of ornithine decarboxylase (ODC) is mediated by accumulation of antizyme in ODC-overproducing variant cells.

The mechanism of spermidine-induced destabilization of ornithine decarboxylase (ODC) was examined in newly isolated ODC-overproducing variant cells by use of an in vitro ODC degrading system. The cells accumulated ODC protein in the presence of alpha-difluoromethylornithine. Addition of spermidine to the medium accelerated degradation of ODC protein concomitantly with induction of antizyme, a regulatory protein that binds to ODC, inhibiting its activity. Both the acceleration of ODC degradation and the induction of antizyme were inhibited by cycloheximide, but not by actinomycin D. ODC was degraded rapidly in extracts from spermidine-treated cells. The rate of ODC degradation correlated with the amount of antizyme in the extracts, and the degradation activity was abolished by treatment of the extracts with anti-antizyme antibody. Thus, antizyme induced by spermidine was essential for the accelerated degradation of ODC in the cells. ODC was phosphorylated in the cells, probably at serine residue 303 in the first internal PEST region. ODC phosphorylation occurred even when its new synthesis was inhibited by cycloheximide. Antizyme accelerated the degradations of both dephosphorylated ODC and native ODC.[1]

References

 
WikiGenes - Universities