The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipase A2. Implications for the coordinated regulation of phospholipolysis and glycolysis.

We have demonstrated previously that myocardial cytosolic calcium-independent phospholipase A2 is a 40-kDa polypeptide regulated by ligand-modulated protein-protein interactions (Hazen, S.L., and Gross, R.W. (1991) J. Biol. Chem. 266, 14526-14534). We now demonstrate that an 85-kDa polypeptide which possesses sequence homology to and chemical, physical, immunological, and chromatographic similarities with phosphofructokinase ( PFK) specifically interacts with the 40-kDa phospholipase A2 catalytic subunit and represents the putative protein regulatory element identified in previous work. Multiple independent lines of evidence document the association between the 85-kDa phosphofructokinase isoform and the 40-kDa myocardial cytosolic calcium-independent phospholipase A2 catalytic polypeptide, including 1) the coelution of the 85- and 40-kDa polypeptides which migrate as a 400-kDa complex during gel filtration chromatography, 2) the stoichiometry between the 85- and 40-kDa polypeptides which corresponds to a complex comprised of a tetrameric PFK isoform and a 40-kDa phospholipase A2 catalytic polypeptide, 3) the demonstration that the 85-kDa phosphofructokinase isoform acts as a specific and reversible affinity adsorbent for myocardial cytosolic phospholipase A2 catalytic activity, 4) the immunoprecipitation of myocardial cytosolic phospholipase A2 activity utilizing chicken anti-rabbit skeletal muscle PFK IgG, 5) the specific release of phospholipase A2 from ATP-agarose after formation of a ternary complex comprised of allosteric modifiers of phosphofructokinase, and 6) the selective attenuation of the denaturation of purified homogeneous calcium-independent cytosolic phospholipase A2 with PFK. Collectively, these results demonstrate the highly specific association of a phosphofructokinase isoform with myocardial cytosolic calcium-independent phospholipase A2 and suggest a novel biochemical mechanism underlying the coordinated regulation of phospholipolysis and glycolysis previously observed in myocardium and in other mammalian tissues.[1]

References

 
WikiGenes - Universities