The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Numerous candidate plasticity-related genes revealed by differential cDNA cloning.

Plasticity is a property of the nervous system that allows it to modify its response to an altered input. This capacity for change suggests that there are molecular mechanisms in neurons that can couple stimuli to long-term alterations in phenotype. Neuronal excitation elicits rapid transcriptional activation of several immediate-early genes, for example c-fos, c-jun and zif268. Many immediate-early genes encode transcription factors that control expression of downstream genes whose products are believed to bring about long-term plastic changes. Here we use a highly sensitive differential complementary DNA cloning procedure to identify genes that may participate in long-term plasticity. We cloned 52 cDNAs of genes induced by the glutamate analogue kainate in the hippocampus dentate gyrus. The number of these candidate plasticity-related genes (CPGs) is estimated to be 500-1,000. One of the cloned CPGs (16C8), encoding a protease inhibitor, is induced by a stimulus producing long-term potentiation and during dentate gyrus development; a second, cpg1, is dependent on activation of the NMDA (N-methyl-D-aspartate) receptor for induction and encodes a new small, dentate-gyrus-specific protein. Seventeen of the cloned CPGs encode known proteins, including six suggesting that strong neuronal activation leads to de novo synthesis of vesicular and other synaptic components.[1]


  1. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nedivi, E., Hevroni, D., Naot, D., Israeli, D., Citri, Y. Nature (1993) [Pubmed]
WikiGenes - Universities