The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Recycling of L-citrulline to sustain nitric oxide-dependent enteric neurotransmission.

Neurons that synthesize nitric oxide from arginine produce stoichiometric amounts of citrulline. We investigated whether nitric oxide-releasing enteric neurons have the capacity to recycle citrulline to arginine and thereby sustain nitrergic neurotransmission. Argininosuccinate synthetase-like immunoreactivity and argininosuccinate lyase-like immunoreactivity, enzymes capable of citrulline to arginine conversion, were both localized in discrete populations of myenteric and submucosal neurons in the canine proximal colon. Argininosuccinate synthetase-like immunoreactivity and argininosuccinate lyase-like immunoreactivity co-localized with neuronal beta-nicotinamide adenine dinucleotide phosphate diaphorase staining, a marker for nitric oxide synthase. The functional significance of argininosuccinate synthetase-like immunoreactivity and argininosuccinate lyase-like immunoreactivity was shown by testing the effects of exogenous citrulline on responses to enteric inhibitory nerve stimulation, which were assessed by measuring contractions, inhibitory junction potentials and electrical slow waves. As shown previously, arginine analogues (L-nitroarginine methyl ester or L-nitroarginine; 100 microM) inhibited nitric oxide-dependent responses, and excess L-arginine restored inhibitory responses. Citrulline alone (0.1-2 mM) had no effect on nitrergic transmission under control conditions, but in the presence of L-nitroarginine methyl ester or L-nitroarginine, citrulline (0.1-2 mM) restored nitrergic transmission in a concentration-dependent manner. Other neutral amino acids (L-serine, L-leucine) did not mimic the effects of citrulline. Taken together, these data suggest that enteric nitrergic neurons have the enzymatic apparatus and functional capability of recycling citrulline to arginine.[1]

References

  1. Recycling of L-citrulline to sustain nitric oxide-dependent enteric neurotransmission. Shuttleworth, C.W., Burns, A.J., Ward, S.M., O'Brien, W.E., Sanders, K.M. Neuroscience (1995) [Pubmed]
 
WikiGenes - Universities