The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEBI:15682     2-[[N'-[(4S)-4-amino-4- carboxy...

Synonyms: AC1L98H0, AS1, 2-(N(omega)-L-arginino)butanedioic acid
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ARGININOSUCCINATE

 

High impact information on ARGININOSUCCINATE

 

Chemical compound and disease context of ARGININOSUCCINATE

 

Biological context of ARGININOSUCCINATE

  • We used complementation analysis as a probe for the detection of genetic heterogeneity within a single locus affected in a human disease, argininosuccinate lyase (L-argininosuccinate arginine-lyase, EC 4.3.2.1) deficiency [10].
  • However, unlike bovine liver argininosuccinase, human liver enzyme exhibited normal Michaelis-Menten kinetics both in phosphate and Tris buffers, and the apparent Michaelis constant for L-argininosuccinate ws 0.1 mM [11].
  • Argininosuccinate was found to be bound to residues in each of the three monomers that form the active site [12].
  • We suspect that relatively more mutable sites maintained unchanged during the evolution of the argininosuccinate gene are able to change in the pseudogenes, such sites being eliminated or rare in the flanking regions which have been void of strong selective constraints over a much longer period [13].
  • Electroporation of strains CC3395 and CC425, cell wall-less mutants devoid of argininosuccinate lyase (encoded by ARG7), in the presence of the plasmid pJD67 (which contains ARG7) was used to optimize conditions for the introduction of exogenous DNA [14].
 

Anatomical context of ARGININOSUCCINATE

  • The urea cycle enzymes, ornithine carbamoyltransferase and arginase, are also located in the mitochondria, whereas argininosuccinate synthetase and argininosuccinate lyase are located in the cytosol [15].
  • The current study was designed using morphologic techniques to determine whether Lcitrulline is taken up into axoplasm of perivascular nerves and to explore the possibility that conversion of Lcitrulline to Larginine in these nerves is through the argininosuccinate pathway in porcine cerebral arteries [16].
  • Our results indicate that argininosuccinate passes between the two cell types via intercellular junctions, and this system provides a simple and accurately quantifiable model for the study of intercellular communication [17].
  • The activities of argininosuccinate synthase and arginase were increased by 4-fold and 50-100-fold, respectively, in enterocytes from post-weaning pigs compared with suckling pigs [18].
  • Argininosuccinate lyase(ASL)/delta-crystallin is a prominent example of an enzyme-crystallin with roles as both a catalyst and a major structural component of the eye lens in birds and reptiles [19].
 

Associations of ARGININOSUCCINATE with other chemical compounds

 

Gene context of ARGININOSUCCINATE

 

Analytical, diagnostic and therapeutic context of ARGININOSUCCINATE

References

  1. Mutational analysis of amino acid residues involved in argininosuccinate lyase activity in duck delta II crystallin. Chakraborty, A.R., Davidson, A., Howell, P.L. Biochemistry (1999) [Pubmed]
  2. Increased urinary excretion of argininosuccinate in type II citrullinemia. Saheki, T., Kobayashi, K., Inoue, I., Matuo, S., Hagihara, S., Noda, T. Clin. Chim. Acta (1987) [Pubmed]
  3. Hypoxia inhibits L-arginine synthesis from L-citrulline in porcine pulmonary artery endothelial cells. Su, Y., Block, E.R. Am. J. Physiol. (1995) [Pubmed]
  4. The loss of a large DNA fragment is associated with an aerial mycelium negative (Amy-) phenotype of Streptomyces cattleya. Usdin, K., Christians, K.M., de Wet, C.A., Potgieter, T.D., Shaw, C.B., Kirby, R. J. Gen. Microbiol. (1985) [Pubmed]
  5. Molecular analysis of human argininosuccinate lyase: mutant characterization and alternative splicing of the coding region. Walker, D.C., McCloskey, D.A., Simard, L.R., McInnes, R.R. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  6. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells. Sessa, W.C., Hecker, M., Mitchell, J.A., Vane, J.R. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  7. Reaction of argininosuccinase with bromomesaconic acid: role of an essential lysine in the active site. Lusty, C.J., Ratner, S. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  8. The role of mitochondrially bound arginase in the regulation of urea synthesis: studies with [U-15N4]arginine, isolated mitochondria, and perfused rat liver. Nissim, I., Luhovyy, B., Horyn, O., Daikhin, Y., Nissim, I., Yudkoff, M. J. Biol. Chem. (2005) [Pubmed]
  9. Acid-base catalysis in the argininosuccinate lyase reaction. Garrard, L.J., Bui, Q.T., Nygaard, R., Raushel, F.M. J. Biol. Chem. (1985) [Pubmed]
  10. Interallelic complementation in an inborn error of metabolism: genetic heterogeneity in argininosuccinate lyase deficiency. McInnes, R.R., Shih, V., Chilton, S. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  11. Human liver arginiosuccinase purification and partial characterization. Palekar, A.G., Mantagos, S. J. Biol. Chem. (1981) [Pubmed]
  12. Crystal structure of an inactive duck delta II crystallin mutant with bound argininosuccinate. Vallée, F., Turner, M.A., Lindley, P.L., Howell, P.L. Biochemistry (1999) [Pubmed]
  13. Mutation pattern variation among regions of the primate genome. Casane, D., Boissinot, S., Chang, B.H., Shimmin, L.C., Li, W. J. Mol. Evol. (1997) [Pubmed]
  14. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Shimogawara, K., Fujiwara, S., Grossman, A., Usuda, H. Genetics (1998) [Pubmed]
  15. Subcellular location of glutamine synthetase and urea cycle enzymes in liver of spiny dogfish (Squalus acanthias). Casey, C.A., Anderson, P.M. J. Biol. Chem. (1982) [Pubmed]
  16. Morphologic evidence for L-citrulline conversion to L-arginine via the argininosuccinate pathway in porcine cerebral perivascular nerves. Yu, J.G., O'Brien, W.E., Lee, T.J. J. Cereb. Blood Flow Metab. (1997) [Pubmed]
  17. Metabolic cooperation between argininosuccinate synthetase and argininosuccinate lyase deficient human fibroblasts. Davidson, J.S., Baumgarten, I.M., Harley, E.H. Exp. Cell Res. (1984) [Pubmed]
  18. Urea synthesis in enterocytes of developing pigs. Wu, G. Biochem. J. (1995) [Pubmed]
  19. Gene conversion and splice-site slippage in the argininosuccinate lyases/delta-crystallins of the duck lens: members of an enzyme superfamily. Wistow, G.J., Piatigorsky, J. Gene (1990) [Pubmed]
  20. On the role of substrate and GTP in the regulation of argininosuccinase activity. Rochovansky, O. J. Biol. Chem. (1975) [Pubmed]
  21. Construction and phenotypic characterization of an auxotrophic mutant of Mycobacterium tuberculosis defective in L-arginine biosynthesis. Gordhan, B.G., Smith, D.A., Alderton, H., McAdam, R.A., Bancroft, G.J., Mizrahi, V. Infect. Immun. (2002) [Pubmed]
  22. Mechanisms for intragenic complementation at the human argininosuccinate lyase locus. Yu, B., Thompson, G.D., Yip, P., Howell, P.L., Davidson, A.R. Biochemistry (2001) [Pubmed]
  23. Chemical mechanism of the endogenous argininosuccinate lyase activity of duck lens delta2-crystallin. Wu, C.Y., Lee, H.J., Wu, S.H., Chen, S.T., Chiou, S.H., Chang, G.G. Biochem. J. (1998) [Pubmed]
  24. Isolation and characterization of argininosuccinate synthetase from human liver. O'Brien, W.E. Biochemistry (1979) [Pubmed]
  25. Urea synthesis in the African lungfish Protopterus dolloi--hepatic carbamoyl phosphate synthetase III and glutamine synthetase are upregulated by 6 days of aerial exposure. Chew, S.F., Ong, T.F., Ho, L., Tam, W.L., Loong, A.M., Hiong, K.C., Wong, W.P., Ip, Y.K. J. Exp. Biol. (2003) [Pubmed]
  26. Arginine repression of the Saccharomyces cerevisiae ARG1 gene. Comparison of the ARG1 and ARG3 control regions. Crabeel, M., Seneca, S., Devos, K., Glansdorff, N. Curr. Genet. (1988) [Pubmed]
  27. Gene sharing by delta-crystallin and argininosuccinate lyase. Piatigorsky, J., O'Brien, W.E., Norman, B.L., Kalumuck, K., Wistow, G.J., Borras, T., Nickerson, J.M., Wawrousek, E.F. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  28. Cloning, characterization, and nucleotide sequence analysis of the argH gene from Campylobacter jejuni TGH9011 encoding argininosuccinate lyase. Hani, E.K., Chan, V.L. J. Bacteriol. (1994) [Pubmed]
  29. Arginine deprivation, growth inhibition and tumour cell death: 3. Deficient utilisation of citrulline by malignant cells. Wheatley, D.N., Campbell, E. Br. J. Cancer (2003) [Pubmed]
  30. Purification and subunit structure of argininosuccinate lyase from Chlamydomonas reinhardi. Matagne, R.F., Schlösser, J.P. Biochem. J. (1977) [Pubmed]
  31. A duck delta1 crystallin double loop mutant provides insight into residues important for argininosuccinate lyase activity. Tsai, M., Sampaleanu, L.M., Greene, C., Creagh, L., Haynes, C., Howell, P.L. Biochemistry (2004) [Pubmed]
  32. Gene isolation through genomic complementation using an indexed library of Chlamydomonas reinhardtii DNA. Zhang, H., Herman, P.L., Weeks, D.P. Plant Mol. Biol. (1994) [Pubmed]
  33. Prenatal diagnosis of argininosuccinic aciduria by assay of argininosuccinate in amniotic fluid at the 12th week of gestation. Chadefaux, B., Ceballos, I., Rabier, D., Coude, M., Kamoun, P., Boue, J., Desgres, J. Am. J. Med. Genet. (1990) [Pubmed]
  34. Interphase fluorescence in situ hybridization studies for the detection of 9q34 deletions in chronic myelogenous leukemia: a practical approach to clinical diagnosis. Aoun, P., Wiggins, M., Pickering, D., Foran, J., Rasheed, H., Pavletic, S.Z., Sanger, W. Cancer Genet. Cytogenet. (2004) [Pubmed]
 
WikiGenes - Universities