The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Genetic adaptation of bacteria to halogenated aliphatic compounds.

The bacterial degradation and detoxification of chlorinated xenobiotic compounds requires the production of enzymes that are capable of recognizing and converting compounds which do not occur at significant concentrations in nature. We have studied the catabolic route of 1,2-dichloroethane as an example of a pathway for the conversion of such a synthetic compound. In strains of Xanthobacter and Ancylobacter that have been isolated on 1,2-dichloroethane, the first catabolic step is catalyzed by a hydrolytic haloalkane dehalogenase. The enzyme converts 1,2-dichloroethane to 2-chloroethanol but is also active with many other environmentally important haloalkanes such as methylchloride, methylbromide, 1,2-dibromoethane, epichlorohydrin, and 1,3-dichloropropene. Further degradation of 2-chloroethanol proceeds by oxidation to the carboxylic acid and dehalogenation to glycolate. The aldehyde dehydrogenase prevents toxicity of the reactive chloroacetaldehyde that is formed as an intermediate and is necessary for establishing a functional 2-chloroethanol degradative pathway in a strain that is not capable of growth on this compound.[1]


  1. Genetic adaptation of bacteria to halogenated aliphatic compounds. Janssen, D.B., van der Ploeg, J.R., Pries, F. Environ. Health Perspect. (1995) [Pubmed]
WikiGenes - Universities