The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Fungal metabolism of 2-nitrofluorene.

Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are direct-acting mutagens and carcinogens that are considered a risk to human health. We investigated the metabolism of 2-nitrofluorene by the fungus Cunninghamella elegans ATCC 36112. At 144 h of incubation, C. elegans had metabolized about 81% of the [9-14C]-2-nitrofluorene, resulting in 6 metabolites. The major metabolites were separated by reversed-phase high-performance liquid chromatography and identified by 1H NMR, ultraviolet (UV)-visible, and mass spectral analyses as 2-nitro-9-fluorenol, 2-nitro-9-fluorenone, 6-hydroxy-2-nitrofluorene, and sulfate conjugates of 7-hydroxy-2-nitro-9-fluorenone and 7-hydroxy-2-nitrofluorene. 2-Nitro-9-fluorenol accounted for about 62% of the total metabolism. For comparison with the microbial system, experiments with liver microsomes of rats pretreated with 3-methyl-cholanthrene were conducted. Microsomal incubations indicated formation of phenolic and ring-hydroxylated products of 2-nitrofluorene. 2-Nitrofluorene and hydroxylated metabolites have been previously implicated as direct-acting mutagens in bacterial assays and have shown sister chromatid exchanges in vivo in bone marrow cells and in vitro in ovary cells and unscheduled DNA synthesis in mammalian studies. Previous studies with other PAHs using C. elegans have shown that the phenols and glucoside and sulfate conjugates of phenols are generally less mutagenic than the parent. The results from the metabolism of 2-nitrofluorene by C. elegans suggests the detoxification potential of this fungus.[1]

References

  1. Fungal metabolism of 2-nitrofluorene. Pothuluri, J.V., Evans, F.E., Heinze, T.M., Fu, P.P., Cerniglia, C.E. Journal of toxicology and environmental health. (1996) [Pubmed]
 
WikiGenes - Universities