The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure.

This study tested the effects of hydrostatic pressure (10 MPa) on adult articular chondrocyte mRNA and extracellular matrix synthesis in vitro. High density primary cultures of bovine chondrocytes were exposed to hydrostatic pressure applied intermittently at 1 Hz or constantly for 4 hours in serum-free medium or in medium containing 1% fetal bovine serum. mRNAs for aggrecan, types I and II collagen, and beta-actin were analyzed by Northern blots and quantified by slot blots. Proteoglycan synthesis was quantified by 35SO4 uptake into cetylpyridinium chloride-precipitable glycosaminoglycans, and cell-associated aggrecan and type-II collagen were detected by immunohistochemical techniques. In serum-free medium, intermittent pressure increased aggrecan mRNA signal by 14% and constant pressure decreased type-II collagen mRNA signal by 16% (p < 0.05). In the presence of 1% fetal bovine serum, intermittent pressure increased aggrecan and type-II collagen mRNA signals by 31% (p < 0.01) and 36% (p < 0.001), respectively, whereas constant pressure had no effect on either mRNA. Intermittent and constant pressure stimulated glycosaminoglycan synthesis 65% (p < 0.001) and 32% (p < 0.05), respectively. Immunohistochemical detection of cell-associated aggrecan and type-II collagen was increased in response to both intermittent and constant pressure. These data support the hypothesis that physiologic hydrostatic pressure directly influences the extracellular matrix metabolism of articular chondrocytes.[1]

References

  1. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. Smith, R.L., Rusk, S.F., Ellison, B.E., Wessells, P., Tsuchiya, K., Carter, D.R., Caler, W.E., Sandell, L.J., Schurman, D.J. J. Orthop. Res. (1996) [Pubmed]
 
WikiGenes - Universities