The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanism of oxidative DNA damage induced by delta-aminolevulinic acid in the presence of copper ion.

Delta-Aminolevulinic acid (ALA) is a heme precursor accumulated in lead poisoning and acute intermittent porphyria. ALA-induced DNA damage in the presence of metal ions was investigated with a DNA sequencing technique and a high-performance liquid chromatograph equipped with an electrochemical detector. ALA caused damage to DNA fragments obtained from c-Ha-ras proto-oncogene in the presence of Cu(II), but only slightly in the presence of Fe(II). ALA + Cu(II) induced piperidine-labile sites at thymine residues, especially in the 5'-GTC-3' and 5'-CTG-3' sequences of double-stranded DNA. Catalase and bathocuproine inhibited DNA damage induced by ALA + Cu(II). Typical .OH scavengers did not inhibit DNA damage, suggesting that active species other than .OH play a more important role in DNA damage. 8-Hydroxy-2'-deoxyguanosine formation by ALA increased with ALA concentration in the presence of Cu(II). Electron spin resonance studies using alpha-(1-oxy-4-pyridyl)-N-tert-butylnitrone as spin trap showed that carbon-centered radicals were generated during Cu(II)-catalyzed autoxidation of ALA. The major pathway of ALA autoxidation consists for the formation of 4,5-dioxovaleric acid and NH(4)+. Formation of a pyrazine derivative through ALA autocondensation was also observed. Concomitantly, O2- and H2O2 were generated during the Cu(II)-catalyzed ALA autoxidation. These results indicate that H2O2 reacts with Cu(I) to form a crypto-OH radical, such as the Cu(I)-peroxide complex, causing DNA damage. The possible mechanism for metal-dependent DNA damage by ALA is discussed in relation to the carcinogenicity of lead compounds and the increased frequency of liver cancer in acute intermittent porphyria.[1]

References

 
WikiGenes - Universities