The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hsp60-independent protein folding in the matrix of yeast mitochondria.

Proteins that are imported from the cytosol into mitochondria cross the mitochondrial membranes in an unfolded conformation and then fold in the matrix. Some of these proteins require the chaperonin hsp60 for folding. To test whether hsp60 is required for the folding of all imported matrix proteins, we monitored the folding of four monomeric proteins after import into mitochondria from wild-type yeast or from a mutant strain in which hsp60 had been inactivated. The four precursors included two authentic matrix proteins (rhodanese and the mitochondrial cyclophilin Cpr3p) and two artificial precursors (matrix-targeted variants of dihydrofolate reductase and barnase). Only rhodanese formed a tight complex with hsp60 and required hsp60 for folding. The three other proteins folded efficiently without, and showed no detectable binding to, hsp60. Thus, the mitochondrial chaperonin system is not essential for the folding of all matrix proteins. These data agree well with earlier in vitro studies, which had demonstrated that only a subset of proteins require chaperones for efficient folding.[1]

References

  1. Hsp60-independent protein folding in the matrix of yeast mitochondria. Rospert, S., Looser, R., Dubaquie, Y., Matouschek, A., Glick, B.S., Schatz, G. EMBO J. (1996) [Pubmed]
 
WikiGenes - Universities