The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity.

Long-term exposure to elevated levels of long chain free fatty acids decreases glucose-induced insulin secretion from pancreatic islets and clonal pancreatic beta-cells. The mechanism for this loss of glucose sensitivity is at present not known. In this study, we evaluated the possibility that increases in long chain acyl-CoA esters (LC-CoA), the metabolically active form of free fatty acids, might mediate the loss of glucose sensitivity. We observed that cellular levels of LC-CoA increased more than 100% in response to overnight incubation with 0.5 mM palmitic acid complexed to albumin. In the same studies, the total CoA pool increased by about 40%. Patch-clamp studies demonstrated that saturated and unsaturated LC-CoA, but not malonyl-CoA or free CoASH, induced a rapid and slowly reversible opening of ATP-sensitive K+ channels. The effect was concentration-dependent between 10 nM and 1 microM. These findings indicate that the ATP-regulated K/ channels is a sensitive target for LC-CoA and suggest that high levels of LC-CoA, which accumulate in response to hyperglycemia or prolonged exposure to free fatty acids, may prevent channel closure and contribute to the development of beta-cell glucose insensitivity.[1]

References

  1. Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity. Larsson, O., Deeney, J.T., Bränström, R., Berggren, P.O., Corkey, B.E. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities