The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Malonyl CoA     2-[2-[3-[[4-[[[(2R,3S,4R,5R)- 5-(6...

Synonyms: malonyl-CoA, HMDB01175, AC1L1VOH, AC1Q5V7Q, 524-14-1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MALONYL COENZYME A

 

Psychiatry related information on MALONYL COENZYME A

 

High impact information on MALONYL COENZYME A

 

Chemical compound and disease context of MALONYL COENZYME A

 

Biological context of MALONYL COENZYME A

  • These findings indicate that nutritional modulation of the hypothalamic abundance of malonyl-coenzyme A is required to restrain food intake and that a primary impairment in this central nutrient-sensing pathway is sufficient to disrupt energy homeostasis and induce obesity [15].
  • Recent studies indicate that abnormalities in cellular lipid metabolism are involved in the pathogenesis of the metabolic syndrome, possibly because of dysregulation of AMPK and malonyl-CoA, a closely related molecule [16].
  • Closely correlated with the increase in muscle fatty acid oxidation is the phosphorylation/inactivation of acetyl-CoA carboxylase, which leads to reduced malonyl-CoA concentration [17].
  • Type III polyketide synthases (PKS) generate an array of natural products by condensing multiple acetyl units derived from malonyl-CoA to thioester-linked starter molecules covalently bound in the PKS active site [18].
  • These findings clarify the mechanism by which the hypothalamic malonyl-CoA signal is communicated to metabolic systems in skeletal muscle that regulate fatty acid oxidation and energy expenditure [17].
 

Anatomical context of MALONYL COENZYME A

 

Associations of MALONYL COENZYME A with other chemical compounds

  • The association of ACC2 with the mitochondria is consistent with the hypothesis that ACC2 is involved in the regulation of mitochondrial fatty acid oxidation through the inhibition of carnitine palmitoyltransferase 1 by its product malonyl-CoA [22].
  • Adding equivalent amounts of TRX-hFAS-dI and TRX-hFAS-dII-III to a reaction mixture containing acetyl-CoA, malonyl-CoA, and NADPH resulted in the synthesis of long-chain fatty acids [23].
  • Hence, reducing cytosolic malonyl-CoA and, therefore, the de novo fatty acid synthesis in the liver, does not affect fatty acid oxidation and glucose homeostasis under lipogenic conditions [24].
  • Using a mass spectrometric approach to simultaneously monitor hundreds of lipids, we discovered that the size and abundance of two lipid virulence factors, phthiocerol dimycocerosate (PDIM) and sulfolipid-1 (SL-1), are controlled by the availability of a common precursor, methyl malonyl CoA (MMCoA) [25].
  • Phentolamine, an alpha-adrenergic blocking agent, prevents the C75-induced increases of skeletal muscle UCP3 and whole body fatty acid oxidation and C75-induced decrease of skeletal muscle malonyl-CoA [17].
 

Gene context of MALONYL COENZYME A

 

Analytical, diagnostic and therapeutic context of MALONYL COENZYME A

References

  1. The hyperleptinemia of obesity-regulator of caloric surpluses. Unger, R.H. Cell (2004) [Pubmed]
  2. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. Rasmussen, B.B., Holmbäck, U.C., Volpi, E., Morio-Liondore, B., Paddon-Jones, D., Wolfe, R.R. J. Clin. Invest. (2002) [Pubmed]
  3. Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. Schujman, G.E., Guerin, M., Buschiazzo, A., Schaeffer, F., Llarrull, L.I., Reh, G., Vila, A.J., Alzari, P.M., de Mendoza, D. EMBO J. (2006) [Pubmed]
  4. Cloning and expression of the multifunctional human fatty acid synthase and its subdomains in Escherichia coli. Jayakumar, A., Huang, W.Y., Raetz, B., Chirala, S.S., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  5. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Hu, Z., Cha, S.H., Chohnan, S., Lane, M.D. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  6. Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. Cook, G.A. J. Biol. Chem. (1984) [Pubmed]
  7. A new pathway for polyketide synthesis in microorganisms. Funa, N., Ohnishi, Y., Fujii, I., Shibuya, M., Ebizuka, Y., Horinouchi, S. Nature (1999) [Pubmed]
  8. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Abu-Elheiga, L., Matzuk, M.M., Abo-Hashema, K.A., Wakil, S.J. Science (2001) [Pubmed]
  9. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Loftus, T.M., Jaworsky, D.E., Frehywot, G.L., Townsend, C.A., Ronnett, G.V., Lane, M.D., Kuhajda, F.P. Science (2000) [Pubmed]
  10. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Thupari, J.N., Landree, L.E., Ronnett, G.V., Kuhajda, F.P. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  11. Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-alpha gene in the pancreatic beta -cell. Roduit, R., Morin, J., Massé, F., Segall, L., Roche, E., Newgard, C.B., Assimacopoulos-Jeannet, F., Prentki, M. J. Biol. Chem. (2000) [Pubmed]
  12. Evidence that two covalent intermediates, phosphoryl and malonyl enzymes, are formed during malonyl-coenzyme A synthetase catalysis. Kim, Y.S., Lee, J.K. J. Biol. Chem. (1986) [Pubmed]
  13. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Prentki, M., Corkey, B.E. Diabetes (1996) [Pubmed]
  14. Mycobacterium smegmatis fatty acid synthetase. A mechanism based on steady state rates and product distributions. Wood, W.I., Peterson, D.O., Bloch, K. J. Biol. Chem. (1977) [Pubmed]
  15. Molecular disruption of hypothalamic nutrient sensing induces obesity. He, W., Lam, T.K., Obici, S., Rossetti, L. Nat. Neurosci. (2006) [Pubmed]
  16. AMPK, the metabolic syndrome and cancer. Luo, Z., Saha, A.K., Xiang, X., Ruderman, N.B. Trends Pharmacol. Sci. (2005) [Pubmed]
  17. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle. Cha, S.H., Hu, Z., Chohnan, S., Lane, M.D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  18. Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Jez, J.M., Bowman, M.E., Noel, J.P. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  19. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Wolfgang, M.J., Kurama, T., Dai, Y., Suwa, A., Asaumi, M., Matsumoto, S., Cha, S.H., Shimokawa, T., Lane, M.D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  20. Complex nested promoters control tissue-specific expression of acetyl-CoA carboxylase genes in wheat. Zuther, E., Huang, S., Jelenska, J., Eilenberg, H., Arnold, E.M., Su, X., Sirikhachornkit, A., Podkowinski, J., Zilberstein, A., Haselkorn, R., Gornicki, P. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  21. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1{alpha}. Cha, S.H., Rodgers, J.T., Puigserver, P., Chohnan, S., Lane, M.D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  22. The subcellular localization of acetyl-CoA carboxylase 2. Abu-Elheiga, L., Brinkley, W.R., Zhong, L., Chirala, S.S., Woldegiorgis, G., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  23. Human fatty acid synthase: assembling recombinant halves of the fatty acid synthase subunit protein reconstitutes enzyme activity. Jayakumar, A., Chirala, S.S., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  24. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Mao, J., DeMayo, F.J., Li, H., Abu-Elheiga, L., Gu, Z., Shaikenov, T.E., Kordari, P., Chirala, S.S., Heird, W.C., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  25. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Jain, M., Petzold, C.J., Schelle, M.W., Leavell, M.D., Mougous, J.D., Bertozzi, C.R., Leary, J.A., Cox, J.S. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  26. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Kohlwein, S.D., Eder, S., Oh, C.S., Martin, C.E., Gable, K., Bacikova, D., Dunn, T. Mol. Cell. Biol. (2001) [Pubmed]
  27. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Brusselmans, K., De Schrijver, E., Verhoeven, G., Swinnen, J.V. Cancer Res. (2005) [Pubmed]
  28. Structural model of a malonyl-CoA-binding site of carnitine octanoyltransferase and carnitine palmitoyltransferase I: mutational analysis of a malonyl-CoA affinity domain. Morillas, M., Gómez-Puertas, P., Rubí, B., Clotet, J., Ariño, J., Valencia, A., Hegardt, F.G., Serra, D., Asins, G. J. Biol. Chem. (2002) [Pubmed]
  29. Definition by functional and structural analysis of two malonyl-CoA sites in carnitine palmitoyltransferase 1A. López-Viñas, E., Bentebibel, A., Gurunathan, C., Morillas, M., de Arriaga, D., Serra, D., Asins, G., Hegardt, F.G., Gómez-Puertas, P. J. Biol. Chem. (2007) [Pubmed]
  30. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Pizer, E.S., Thupari, J., Han, W.F., Pinn, M.L., Chrest, F.J., Frehywot, G.L., Townsend, C.A., Kuhajda, F.P. Cancer Res. (2000) [Pubmed]
  31. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. Kudo, N., Barr, A.J., Barr, R.L., Desai, S., Lopaschuk, G.D. J. Biol. Chem. (1995) [Pubmed]
  32. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. Vavvas, D., Apazidis, A., Saha, A.K., Gamble, J., Patel, A., Kemp, B.E., Witters, L.A., Ruderman, N.B. J. Biol. Chem. (1997) [Pubmed]
  33. Purification and properties of a novel type of malonate decarboxylase from Acinetobacter calcoaceticus. Kim, Y.S., Byun, H.S. J. Biol. Chem. (1994) [Pubmed]
  34. Molecular cloning, nucleotide sequence, and tissue distribution of malonyl-CoA decarboxylase. Jang, S.H., Cheesbrough, T.M., Kolattukudy, P.E. J. Biol. Chem. (1989) [Pubmed]
 
WikiGenes - Universities