Lipoprotein metabolism in human peritoneal cells.
The feasibility of using human cells isolated from peritoneal dialysis effluent as a model for studying lipoprotein and cholesterol metabolism was investigated. Human peritoneal cells degraded low density lipoproteins (LDL) and acetylated LDL (acetyl-LDL) by saturable, high affinity receptor-mediated processes. Positive correlations of the percentage of macrophage cells with degradation rates of LDL (r = 0.742; p < 0.05) and acetyl-LDL (r = 0.931; p < 0.01) indicated that macrophage cells significantly contributed to lipoprotein degradation. LDL receptor-mediated degradation was calcium dependent, and sensitive to pronase and chloroquine treatments. The receptor exhibited specificity for lipoproteins containing apolipoprotein B (apoB) or apolipoprotein E (apoE). Exposure of cells to LDL for 24 hrs significantly down-regulated LDL receptor-mediated degradation. Acetyl-LDL receptor-mediated degradation was calcium independent, inhibited by chloroquine, and was sensitive to pronase and fucoidin treatments. The scavenger receptor exhibited specificity for only acetyl-LDL. These results demonstrate that human peritoneal cells can provide a source of human tissue macrophages suitable for studies of cholesterol and lipoprotein metabolism and offer the opportunity for comparison of metabolic characteristics of in vivo maturated macrophages with available macrophage-like cell lines.[1]References
- Lipoprotein metabolism in human peritoneal cells. Winzerling, J.J., Jouni, Z.E., McNamara, D.J. Life Sci. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg