The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structure-activity relationships of a series of substituted benzamides: potent D2/5-HT2 antagonists and 5-HT1a agonists as neuroleptic agents.

A series of substituted (4-(4-(1,2-benzisothiazol-3-yl)-1-piperazinyl)butyl)benzamide derivatives was prepared and evaluated as potential atypical antipsychotic agents. The target compounds were readily prepared from their benzoyl chloride, benzoic acid, or isatoic anhydride precursors, and they were evaluated in vitro for their ability to bind to dopamine D2, serotonin 5-HT2, and serotonin 5-HT1a receptors. To assess the potential antipsychotic activity of these compounds, we investigated their ability to inhibit the apomorphine-induced climbing response in mice. Selected compounds were evaluated further to determine their side-effect potentials. Structure-activity relationships of both mono- and polysubstituted benzamides are discussed herein. While several analogues had potent in vitro and in vivo activities indicative of potential atypical antipsychotic activity, anthranilamide 77 (1192U90) ddemonstrated a superior pharmacological profile. As a result of this investigation, 1192U90 (2-amino-N-(4-(4-(1,2-benzisothiazol-3-yl)-1-piperazinyl)butyl)ben zamide hydrochloride) was selected for further evaluation and is currently in phase I clinical trials as a potential atypical antipsychotic agent.[1]

References

 
WikiGenes - Universities