The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Htr2a  -  5-hydroxytryptamine (serotonin) receptor 2A

Mus musculus

Synonyms: 5-HT-2, 5-HT-2A, 5-HT2A receptor, 5-hydroxytryptamine receptor 2A, E030013E04, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Htr2a

 

Psychiatry related information on Htr2a

  • In particular, the hypolocomotion produced by m-CPP has been suggested to be mediated by 5-HT2C receptors. m-CPP binds with high affinity to 5-HT1 as well as 5-HT2 receptors, thus effects of m-CPP on locomotor activity may be due to the physiologic summation of the actions of m-CPP at 5-HT1 as well as 5-HT2 receptors [6].
  • The effects of acute and repeated administration of T3 to mice on 5-HT1 and 5-HT2 function in the brain and its influence on the actions of repeated electroconvulsive shock [5].
  • 1. The ability of 5-hydroxytryptophan, 5-HT2 receptor antagonists and typical and atypical neuroleptic agents to modify behavioural responding to aversive situations was investigated in the mouse light/dark test and rat social interaction [7].
  • These results suggest that the beneficial effect of minaprine on cycloheximide-induced amnesia may be related not only to cholinergic but also serotonergic neuronal systems (5-HT2 receptors) [8].
  • In view of previous results indicating that the panic-promoting drug yohimbine increases flight/escape reactions and that the panicolytic compound alprazolam reduces these responses, we tentatively suggest that the preferential 5-HT2A receptor antagonist pirenperone may have some efficacy in improving panic attacks [9].
 

High impact information on Htr2a

 

Chemical compound and disease context of Htr2a

 

Biological context of Htr2a

 

Anatomical context of Htr2a

 

Associations of Htr2a with chemical compounds

  • The serotonin receptor gene, Htr2a, maps near and is a candidate for El5, and linkages of other serotonin receptor genes to seizure frequency QTL are noted [27].
  • The requirement for functional 5-HT2B receptors between 8 and 9 days postcoitum is supported by culture of embryos exposed to 5-HT2-specific ligands; 5-HT2B high-affinity antagonist such as ritanserin, induced morphological defects in the cephalic region, heart and neural tube [28].
  • 5-HT2 receptor-mediated head twitch behaviour induced by precursor loading with 5-HTP was unaffected by TVX Q 7821 (10 mg/kg) pretreatment 75 min earlier, but the head-twitch induced by the agonist 5-methoxy-N,N-dimethyltryptamine was enhanced by prior treatment with TVX Q 7821 [29].
  • In contrast, the selective 5-HT2A receptor antagonist, SR 46349B (0.1 mg/kg and 1 mg/kg) completely abolished the paroxetine-induced increase in punished passages [30].
  • CONCLUSION: These results indicate that the co-administration of 5-HT2 receptor agonists with paroxetine and venlafaxine may provide a powerful tool for enhancing the clinical efficacy of these antidepressants [30].
 

Physical interactions of Htr2a

 

Regulatory relationships of Htr2a

  • The ability of the glucocorticoid receptor (GR) to influence transcription of the rat 5-HT2 receptor gene was tested in two different experimental paradigms [32].
  • Role of the inhibitory adrenergic alpha 2 and serotonergic 5-HT1A components of cocaine's actions on the DOI-induced head-twitch response in 5-HT2-receptor supersensitive mice [33].
  • 5-HT suppression of IFN-gamma-induced Ia expression was antagonized by the 5-HT2 type receptor antagonists spiperone, ketanserin, and LY53857 [25].
  • These findings suggest that the activation of the peripheral 5-HT2 receptor induces the increase in plasma glucagon level and that these receptors may play a role in the release of glucagon [34].
  • NMDA receptor antagonists enhance 5-HT2 receptor-mediated behavior, head-twitch response, in mice [35].
 

Other interactions of Htr2a

  • In rats, both compounds elicited behavioral signs of 5-HT2C receptor agonism but not 5-HT2A receptor agonism [36].
  • Together, these results indicate that EE produces dose-related antinociception in several models of chemical and thermal pain through mechanisms that involve an interaction with opioid and serotonergic (i.e., through 5-HT 1A/1B and 5-HT 2A receptors) systems [37].
  • These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A(y) mice, but did not increase plasma adiponectin levels [1].
  • The nonspecific 5-HT receptor agonist (and 5-HT2 receptor antagonist) quipazine also induced "wet dog shaking" at doses which suppressed aggression, social interest, and exploration but increased inactive behaviors (sitting and lying) [38].
  • In contrast, ketanserin, a specific 5-HT2 antagonist, and 5-HT3-selective drugs (ICS 205 930 and MDL 72222) were very weak in antagonizing the 5-HT-inhibited cAMP formation [39].
 

Analytical, diagnostic and therapeutic context of Htr2a

References

  1. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A(y) mice. Nonogaki, K., Nozue, K., Oka, Y. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  2. Identification of an endogenous 5-hydroxytryptamine2A receptor in NIH-3T3 cells: agonist-induced down-regulation involves decreases in receptor RNA and number. Saucier, C., Albert, P.R. J. Neurochem. (1997) [Pubmed]
  3. Gene structure and expression of the mouse 5-HT2 receptor. Yang, W., Chen, K., Lan, N.C., Gallaher, T.K., Shih, J.C. J. Neurosci. Res. (1992) [Pubmed]
  4. Dysregulation of diurnal rhythms of serotonin 5-HT2C and corticosteroid receptor gene expression in the hippocampus with food restriction and glucocorticoids. Holmes, M.C., French, K.L., Seckl, J.R. J. Neurosci. (1997) [Pubmed]
  5. The effects of acute and repeated administration of T3 to mice on 5-HT1 and 5-HT2 function in the brain and its influence on the actions of repeated electroconvulsive shock. Heal, D.J., Smith, S.L. Neuropharmacology (1988) [Pubmed]
  6. Meta-chlorophenylpiperazine induced changes in locomotor activity are mediated by 5-HT1 as well as 5-HT2C receptors in mice. Gleason, S.D., Shannon, H.E. Eur. J. Pharmacol. (1998) [Pubmed]
  7. Behavioural interactions between 5-hydroxytryptophan, neuroleptic agents and 5-HT receptor antagonists in modifying rodent responding to aversive situations. Costall, B., Naylor, R.J. Br. J. Pharmacol. (1995) [Pubmed]
  8. Effect of minaprine on cycloheximide-induced amnesia in mice. Nabeshima, T., Kawashima, K., Kameyama, T. Eur. J. Pharmacol. (1989) [Pubmed]
  9. 5-HT1A agonists modulate mouse antipredator defensive behavior differently from the 5-HT2A antagonist pirenperone. Griebel, G., Blanchard, D.C., Jung, A., Masuda, C.K., Blanchard, R.J. Pharmacol. Biochem. Behav. (1995) [Pubmed]
  10. Presynaptic serotonin receptor-mediated response in mice attenuated by antidepressant drugs and electroconvulsive shock. Goodwin, G.M., De Souza, R.J., Green, A.R. Nature (1985) [Pubmed]
  11. Antithetic regulation by beta-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway beta-agonist paradox. McGraw, D.W., Almoosa, K.F., Paul, R.J., Kobilka, B.K., Liggett, S.B. J. Clin. Invest. (2003) [Pubmed]
  12. Contribution of 5-HT2A receptor in nematode infection-induced murine intestinal smooth muscle hypercontractility. Zhao, A., Urban, J.F., Morimoto, M., Elfrey, J.E., Madden, K.B., Finkelman, F.D., Shea-Donohue, T. Gastroenterology (2006) [Pubmed]
  13. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Walterscheid, J.P., Nghiem, D.X., Kazimi, N., Nutt, L.K., McConkey, D.J., Norval, M., Ullrich, S.E. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  14. DARPP-32 mediates serotonergic neurotransmission in the forebrain. Svenningsson, P., Tzavara, E.T., Liu, F., Fienberg, A.A., Nomikos, G.G., Greengard, P. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  15. Studies on modulation of feeding behavior by atypical antipsychotics in female mice. Kaur, G., Kulkarni, S.K. Prog. Neuropsychopharmacol. Biol. Psychiatry (2002) [Pubmed]
  16. Effect of valproic acid on serotonin-2A receptor signaling in C6 glioma cells. Sullivan, N.R., Burke, T., Siafaka-Kapadai, A., Javors, M., Hensler, J.G. J. Neurochem. (2004) [Pubmed]
  17. 5-HT2 receptor characteristics in frontal cortex and 5-HT2 receptor-mediated head-twitch behaviour following antidepressant treatment to mice. Goodwin, G.M., Green, A.R., Johnson, P. Br. J. Pharmacol. (1984) [Pubmed]
  18. Similar ameliorating effects of benzomorphans and 5-HT2 antagonists on drug-induced impairment of passive avoidance response in mice: comparison with acetylcholinesterase inhibitors. Matsuno, K., Senda, T., Matsunaga, K., Mita, S., Kaneto, H. Psychopharmacology (Berl.) (1993) [Pubmed]
  19. Identification of quantitative trait loci for haloperidol-induced catalepsy on mouse chromosome 14. Rasmussen, E., Cipp, L., Hitzemann, R. J. Pharmacol. Exp. Ther. (1999) [Pubmed]
  20. The serotonin receptor subtype 2 locus HTR2 is on human chromosome 13 near genes for esterase D and retinoblastoma-1 and on mouse chromosome 14. Hsieh, C.L., Bowcock, A.M., Farrer, L.A., Hebert, J.M., Huang, K.N., Cavalli-Sforza, L.L., Julius, D., Francke, U. Somat. Cell Mol. Genet. (1990) [Pubmed]
  21. Antisense inhibition of 5-hydroxytryptamine2a receptor induces an antidepressant-like effect in mice. Sibille, E., Sarnyai, Z., Benjamin, D., Gal, J., Baker, H., Toth, M. Mol. Pharmacol. (1997) [Pubmed]
  22. A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases. Kurrasch-Orbaugh, D.M., Parrish, J.C., Watts, V.J., Nichols, D.E. J. Neurochem. (2003) [Pubmed]
  23. In vivo electrophysiological examination of 5-HT2 responses in 5-HT2C receptor mutant mice. Rueter, L.E., Tecott, L.H., Blier, P. Naunyn Schmiedebergs Arch. Pharmacol. (2000) [Pubmed]
  24. Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Amargós-Bosch, M., Bortolozzi, A., Puig, M.V., Serrats, J., Adell, A., Celada, P., Toth, M., Mengod, G., Artigas, F. Cereb. Cortex (2004) [Pubmed]
  25. Effect of serotonin on murine macrophages: suppression of Ia expression by serotonin and its reversal by 5-HT2 serotonergic receptor antagonists. Sternberg, E.M., Trial, J., Parker, C.W. J. Immunol. (1986) [Pubmed]
  26. Different role of 5-HT1A and 5-HT2 receptors in spinal cord in the control of nociceptive responsiveness. Eide, P.K., Hole, K. Neuropharmacology (1991) [Pubmed]
  27. New seizure frequency QTL and the complex genetics of epilepsy in EL mice. Frankel, W.N., Valenzuela, A., Lutz, C.M., Johnson, E.W., Dietrich, W.F., Coffin, J.M. Mamm. Genome (1995) [Pubmed]
  28. 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Choi, D.S., Ward, S.J., Messaddeq, N., Launay, J.M., Maroteaux, L. Development (1997) [Pubmed]
  29. The effects of a 5-HT1 receptor ligand isapirone (TVX Q 7821) on 5-HT synthesis and the behavioural effects of 5-HT agonists in mice and rats. Goodwin, G.M., De Souza, R.J., Green, A.R. Psychopharmacology (Berl.) (1986) [Pubmed]
  30. Implication of 5-HT2 receptor subtypes in the mechanism of action of antidepressants in the four plates test. Nic Dhonnchadha, B.A., Ripoll, N., Clénet, F., Hascoët, M., Bourin, M. Psychopharmacology (Berl.) (2005) [Pubmed]
  31. Serotonin stimulates megakaryocytopoiesis via the 5-HT2 receptor. Yang, M., Srikiatkhachorn, A., Anthony, M., Chong, B.H. Blood Coagul. Fibrinolysis (1996) [Pubmed]
  32. Transcriptional control of the rat serotonin-2 receptor gene. Garlow, S.J., Ciaranello, R.D. Brain Res. Mol. Brain Res. (1995) [Pubmed]
  33. Role of the inhibitory adrenergic alpha 2 and serotonergic 5-HT1A components of cocaine's actions on the DOI-induced head-twitch response in 5-HT2-receptor supersensitive mice. Darmani, N.A. Pharmacol. Biochem. Behav. (1993) [Pubmed]
  34. Peripherally administered serotonin induces hyperglucagonemia in mice. Yamada, J., Sugimoto, Y., Kimura, I., Watanabe, Y., Takeuchi, N., Horisaka, K. Life Sci. (1993) [Pubmed]
  35. NMDA receptor antagonists enhance 5-HT2 receptor-mediated behavior, head-twitch response, in mice. Kim, H.S., Park, I.S., Park, W.K. Life Sci. (1998) [Pubmed]
  36. 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. Martin, J.R., Bös, M., Jenck, F., Moreau, J., Mutel, V., Sleight, A.J., Wichmann, J., Andrews, J.S., Berendsen, H.H., Broekkamp, C.L., Ruigt, G.S., Köhler, C., Delft, A.M. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  37. Antinociceptive properties of the ethanolic extract and of the triterpene 3beta,6beta,16beta-trihidroxilup-20(29)-ene obtained from the flowers of Combretum leprosum in mice. Pietrovski, E.F., Rosa, K.A., Facundo, V.A., Rios, K., Marques, M.C., Santos, A.R. Pharmacol. Biochem. Behav. (2006) [Pubmed]
  38. Serotonin receptors and animal models of aggressive behavior. Olivier, B., Mos, J., van Oorschot, R., Hen, R. Pharmacopsychiatry (1995) [Pubmed]
  39. Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Dumuis, A., Sebben, M., Bockaert, J. Mol. Pharmacol. (1988) [Pubmed]
  40. Differential effects of novel ligands for 5-HT receptor subtypes on nonopioid defensive analgesia in male mice. Rodgers, R.J., Shepherd, J.K., Donát, P. Neuroscience and biobehavioral reviews. (1991) [Pubmed]
  41. A direct interaction of PSD-95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. Xia, Z., Gray, J.A., Compton-Toth, B.A., Roth, B.L. J. Biol. Chem. (2003) [Pubmed]
  42. Pharmacological characterization of RP 62203, a novel 5-hydroxytryptamine 5-HT2 receptor antagonist. Doble, A., Girdlestone, D., Piot, O., Allam, D., Betschart, J., Boireau, A., Dupuy, A., Guérémy, C., Ménager, J., Zundel, J.L. Br. J. Pharmacol. (1992) [Pubmed]
 
WikiGenes - Universities