SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein.
The SIN3 gene in Saccharomyces cerevisiae encodes a negative regulator of transcription of a large number of genes. Mouse homologs of SIN3 have been identified through screens for proteins interacting with the mammalian Mad1 protein, a transcriptional repressor. We find that yeast Sin3 (ySin3) interacts with Madl and that, as for mouse Sin3, the N terminus of Mad1 interacts with the PAH2 domain of ySin3. Although Mad1 (a basic helix-loop-helix leucine zipper [bHLH-Zip) protein) forms a heterodimer with the Max bHLH-Zip protein, LexA-Mad1 and VP16-Max do not activate transcription of a reporter gene in a two-hybrid assay. This failure in activation is due to direct repression by ySin3, as LexA-Mad1 and VP16-Max are able to activate the two-hybrid reporter in a sin3 mutant. This inhibition of activation by LexA-Mad1 and VP16-Max requires the PAH2 domain of ySin3 and the N-terminal interaction region of Mad1. These data demonstrate that ySin3 functions as a transcriptional repressor by being brought to promoters by interacting with proteins bound to DNA.[1]References
- SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein. Kasten, M.M., Ayer, D.E., Stillman, D.J. Mol. Cell. Biol. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg